首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
When a wind turbine works in yaw, the wake intensity and the power production of the turbine become slightly smaller and a deflection of the wake is induced. Therefore, a good understanding of this effect would allow an active control of the yaw angle of upstream turbines to steer the wake away from downstream machines, reducing its effect on them. In wind farms where interaction between turbines is significant, it is of interest to maximize the power output from the wind farm as a whole and to reduce fatigue loads on downstream turbines due to the increase of turbulence intensity in wakes. A large eddy simulation model with particular wind boundary conditions has been used recently to simulate and characterize the turbulence generated by the presence of a wind turbine and its evolution downstream the machine. The simplified turbine is placed within an environment in which relevant flow properties like wind speed profile, turbulence intensity and the anisotropy of turbulence are found to be similar to the ones of the neutral atmosphere. In this work, the model is used to characterize the wake deflection for a range of yaw angles and thrust coefficients of the turbine. The results are compared with experimental data obtained by other authors with a particle image velocimetry technique from wind tunnel experiments. Also, a comparison with simple analytical correlations is carried out. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Power production of an onshore wind farm is investigated through supervisory control and data acquisition data, while the wind field is monitored through scanning light detection and ranging measurements and meteorological data acquired from a met‐tower located in proximity to the turbine array. The power production of each turbine is analysed as functions of the operating region of the power curve, wind direction and atmospheric stability. Five different methods are used to estimate the potential wind power as a function of time, enabling an estimation of power losses connected with wake interactions. The most robust method from a statistical standpoint is that based on the evaluation of a reference wind velocity at hub height and experimental mean power curves calculated for each turbine and different atmospheric stability regimes. The synergistic analysis of these various datasets shows that power losses are significant for wind velocities higher than cut‐in wind speed and lower than rated wind speed of the turbines. Furthermore, power losses are larger under stable atmospheric conditions than for convective regimes, which is a consequence of the stability‐driven variability in wake evolution. Light detection and ranging measurements confirm that wind turbine wakes recover faster under convective regimes, thus alleviating detrimental effects due to wake interactions. For the wind farm under examination, power loss due to wake shadowing effects is estimated to be about 4% and 2% of the total power production when operating under stable and convective conditions, respectively. However, cases with power losses about 60‐80% of the potential power are systematically observed for specific wind turbines and wind directions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Individual wind turbines in a wind farm typically operate to maximize their performance with no consideration of the impact of wake effects on downstream turbines. There is potential to increase power and reduce structural loads within a wind farm by properly coordinating the turbines. To effectively design and analyze coordinated wind turbine controllers requires control‐oriented turbine wake models of sufficient accuracy. This paper focuses on constructing such a model from experiments. The experiments were conducted to better understand the wake interaction and impact on voltage production in a three‐turbine array. The upstream turbine operating condition was modulated in time, and the dynamic impact on the downstream turbine was recorded through the voltage output time signal. The flow dynamics observed in the experiments were used to improve a static wake model often used in the literature for wind farm control. These experiments were performed in the atmospheric boundary layer wind tunnel at the Saint Anthony Falls Laboratory at the University of Minnesota using particle image velocimetry for flow field analysis and turbine voltage modulation to capture the physical evolution in addition to the dynamics of turbine wake interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Wind farm control using dynamic concepts is a research topic that is receiving an increasing amount of interest. The main concept of this approach is that dynamic variations of the wind turbine control settings lead to higher wake turbulence, and subsequently faster wake recovery due to increased mixing. As a result, downstream turbines experience higher wind speeds, thus increasing their energy capture. In dynamic induction control (DIC), the magnitude of the thrust force of an upstream turbine is varied. Although very effective, this approach also leads to increased power and thrust variations, negatively impacting energy quality and fatigue loading. In this paper, a novel approach for the dynamic control of wind turbines in a wind farm is proposed: using individual pitch control, the fixed‐frame tilt and yaw moments on the turbine are varied, thus dynamically manipulating the wake. This strategy is named the helix approach because the resulting wake has a helical shape. Large eddy simulations of a two‐turbine wind farm show that this approach leads to enhanced wake mixing with minimal power and thrust variations.  相似文献   

5.
The dynamics of wind turbine behavior are complex and a critical area of study for the wind industry. Identification of factors that cause changes in turbine performance can sometimes prove to be challenging, whereas other times, it can be intuitive. The quantification of the effect that these factors have is valuable for making improvements to both power performance and turbine health. In commercial farms, large quantities of meteorological and performance data are commonly collected to monitor daily operations. These data can also be used to analyze the relationship between each parameter in order to better understand the interactions that occur and the information contained within these signals. In this global sensitivity analysis, a neural network is used to model select wind turbine supervisory control and data acquisition system parameters for an array of turbines from a commercial wind farm that exhibit signs of wake interaction. An extended Fourier amplitude sensitivity test is then performed for 2 years of 10‐min averaged data. The study examines the primary and combined sensitivities of power output to each selected parameter for two turbines in the array. The primary sensitivities correspond to single parameter interactions, whereas combined sensitivities account for interactions between multiple parameters simultaneously. Highly influential parameters such as wind speed and rotor rotation frequency produce expected results; the extended Fourier amplitude sensitivity test method proved effective at quantifying the sensitivity of a wide range of more subtle inputs. These include blade pitch, yaw position, main bearing and ambient temperatures as well as wind speed and yaw position standard deviation. The technique holds promise for application in full‐scale wake studies where it might be used to determine the benefits of emerging power optimization strategies such as active wake management. The field of structural health monitoring can also benefit from this method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
为减小风电场尾流效应的影响,提升风电场整体发电量,提出一种基于偏航尾流模型的风电场功率协同优化方法。首先建立风电场偏航尾流模型,该模型包括用于计算单机组尾流速度分布的Jensen-Gaussian尾流模型、尾流偏转模型及多机组尾流叠加模型,对各机组风轮前来流风速进行求解;再根据来流风速计算风电场输出功率,并以风电场整体输出功率最大为优化目标,利用拟牛顿算法协同优化各机组轴向诱导因子和偏航角度。以4行4列方形布置的16台NREL-5 MW风电机组为对象进行仿真研究。结果表明,所提出的基于偏航尾流模型的风电场功率协同优化方法能显著提升风电场整体输出功率。  相似文献   

7.
以某典型风电场为例,采用尾流模型模拟研究风电机组启停优化对风电机组尾流干涉和发电量的影响。在速度恢复系数小于0.06时,典型机位的停机可增加风电场全场发电量。以中国北方某实际风电场为例进行现场试验,在主风向下,通过调度上游风电机组的启停,实现区域内风电机组发电量提升,验证方法的有效性。  相似文献   

8.
This paper investigates wake effects on load and power production by using the dynamic wake meander (DWM) model implemented in the aeroelastic code HAWC2. The instationary wind farm flow characteristics are modeled by treating the wind turbine wakes as passive tracers transported downstream using a meandering process driven by the low frequent cross‐wind turbulence components. The model complex is validated by comparing simulated and measured loads for the Dutch Egmond aan Zee wind farm consisting of 36 Vestas V90 turbine located outside the coast of the Netherlands. Loads and production are compared for two distinct wind directions—a free wind situation from the dominating southwest and a full wake situation from northwest, where the observed turbine is operating in wake from five turbines in a row with 7D spacing. The measurements have a very high quality, allowing for detailed comparison of both fatigue and min–mean–max loads for blade root flap, tower yaw and tower bottom bending moments, respectively. Since the observed turbine is located deep inside a row of turbines, a new method on how to handle multiple wakes interaction is proposed. The agreement between measurements and simulations is excellent regarding power production in both free and wake sector, and a very good agreement is seen for the load comparisons too. This enables the conclusion that wake meandering, caused by large scale ambient turbulence, is indeed an important contribution to wake loading in wind farms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The maintenance of wind farms is one of the major factors affecting their profitability. During preventive maintenance, the shutdown of wind turbines causes downtime energy losses. The selection of when and which turbines to maintain can significantly impact the overall downtime energy loss. This paper leverages a wind farm power generation model to calculate downtime energy losses during preventive maintenance for an offshore wind farm. Wake effects are considered to accurately evaluate power output under specific wind conditions. In addition to wind speed and direction, the influence of wake effects is an important factor in selecting time windows for maintenance. To minimize the overall downtime energy loss of an offshore wind farm caused by preventive maintenance, a mixed-integer nonlinear optimization problem is formulated and solved by the genetic algorithm, which can select the optimal maintenance time windows of each turbine. Weather conditions are imposed as constraints to ensure the safety of maintenance personnel and transportation. Using the climatic data of Cape Cod, Massachusetts, the schedule of preventive maintenance is optimized for a simulated utility-scale offshore wind farm. The optimized schedule not only reduces the annual downtime energy loss by selecting the maintenance dates when wind speed is low but also decreases the overall influence of wake effects within the farm. The portion of downtime energy loss reduced due to consideration of wake effects each year is up to approximately 0.2% of the annual wind farm energy generation across the case studies—with other stated opportunities for further profitability improvements.  相似文献   

10.
This paper presents a wind plant modeling and optimization tool that enables the maximization of wind plant annual energy production (AEP) using yaw‐based wake steering control and layout changes. The tool is an extension of a wake engineering model describing the steady‐state effects of yaw on wake velocity profiles and power productions of wind turbines in a wind plant. To make predictions of a wind plant's AEP, necessary extensions of the original wake model include coupling it with a detailed rotor model and a control policy for turbine blade pitch and rotor speed. This enables the prediction of power production with wake effects throughout a range of wind speeds. We use the tool to perform an example optimization study on a wind plant based on the Princess Amalia Wind Park. In this case study, combined optimization of layout and wake steering control increases AEP by 5%. The power gains from wake steering control are highest for region 1.5 inflow wind speeds, and they continue to be present to some extent for the above‐rated inflow wind speeds. The results show that layout optimization and wake steering are complementary because significant AEP improvements can be achieved with wake steering in a wind plant layout that is already optimized to reduce wake losses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The optimization of wind farms with respect to spatial layout is addressed experimentally. Wake effects within wind turbine farms are well known to be deleterious in terms of power generation and structural loading, which is corroborated in this study. Computational models are the predominant tools in the prediction of turbine‐induced flow fields. However, for wind farms comprising hundreds of turbines, reliability of the obtained numerical data becomes a growing concern with potentially costly consequences. This study pursues a systematic complementary theoretical, experimental and numerical study of variations in generated power with turbine layout of an 80 turbine large wind farm. Wake effects within offshore wind turbine arrays are emulated using porous discs mounted on a flat plate in a wind tunnel. The adopted approach to reproduce experimentally individual turbine wake characteristics is presented, and drag measurements are argued to correctly capture the variation in power generation with turbine layout. Experimental data are juxtaposed with power predictions using ANSYS WindModeller simulation suite. Although comparison with available wind farm power output data has been limited, it is demonstrated nonetheless that this approach has potential for the validation of numerical models of power loss due to wake effects or even to make a direct physical prediction. The approach has even indicated useful data for the improvement of the physics within numerical models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a method for real‐time estimation of the possible power of an offshore wind power plant when it is down‐regulated. The main purpose of the method is to provide an industrially applicable estimate of the possible (or reserve) power. The method also yields a real‐time power curve, which can be used for operation monitoring and wind farm control. Currently, there is no verified approach regarding estimation of possible power at wind farm scale. The key challenge in possible power estimation at wind farm level is to correct the reduction in wake losses, which occurs due to the down‐regulation. Therefore, firstly, the 1‐second wind speeds at the upstream turbines are estimated, since they are not affected by the reduced wake. Then they are introduced into the wake model, adjusted for the same time resolution, to correct the wake losses. To mitigate the uncertainties due to dynamic changes within the large offshore wind farms, the algorithm is updated at every turbine downstream, considering the local axial and lateral turbulence effects. The PossPOW algorithm uses only 1‐Hz turbine data as inputs and provides possible power output. The algorithm is trained and validated in Thanet and Horns Rev‐I offshore wind farms under nominal operation, where the turbines are following the optimum power curve. The results indicate that the PossPOW algorithm performs well; in the Horns Rev‐I wind farm, the strict power system requirements are met more than 70% of the time over the 24‐hour data set on which the algorithm was evaluated.  相似文献   

13.
Accurately quantifying wind turbine wakes is a key aspect of wind farm economics in large wind farms. This paper introduces a new simulation post‐processing method to address the wind direction uncertainty present in the measurements of the Horns Rev offshore wind farm. This new technique replaces the traditional simulations performed with the 10 min average wind direction by a weighted average of several simulations covering a wide span of directions. The weights are based on a normal distribution to account for the uncertainty from the yaw misalignment of the reference turbine, the spatial variability of the wind direction inside the wind farm and the variability of the wind direction within the averaging period. The results show that the technique corrects the predictions of the models when the simulations and data are averaged over narrow wind direction sectors. In addition, the agreement of the shape of the power deficit in a single wake situation is improved. The robustness of the method is verified using the Jensen model, the Larsen model and Fuga, which are three different engineering wake models. The results indicate that the discrepancies between the traditional numerical simulations and power production data for narrow wind direction sectors are not caused by an inherent inaccuracy of the current wake models, but rather by the large wind direction uncertainty included in the dataset. The technique can potentially improve wind farm control algorithms and layout optimization because both applications require accurate wake predictions for narrow wind direction sectors. © 2013 The Authors. Wind Energy published by John Wiley & Sons, Ltd.  相似文献   

14.
Wei Tian  Ahmet Ozbay  Hui Hu 《风能》2018,21(2):100-114
An experimental investigation was conducted for a better understanding of the wake interferences among wind turbines sited in wind farms with different turbine layout designs. Two different types of inflows were generated in an atmospheric boundary layer wind tunnel to simulate the different incoming surface winds over typical onshore and offshore wind farms. In addition to quantifying the power outputs and dynamic wind loads acting on the model turbines, the characteristics of the wake flows inside the wind farms were also examined quantitatively. After adding turbines staggered between the first 2 rows of an aligned wind farm to increase the turbine number density in the wind farm, the added staggered turbines did not show a significant effect on the aeromechanical performance of the downstream turbines for the offshore case. However, for the onshore case, while the upstream staggered turbines have a beneficial effect on the power outputs of the downstream turbines, the fatigue loads acting on the downstream turbines were also found to increase considerably due to the wake effects induced by the upstream turbines. With the same turbine number density and same inflow characteristics, the wind turbines were found to be able to generate much more power when they are arranged in a staggered layout than those in an aligned layout. In addition, the characteristics of the dynamic wind loads acting on the wind turbines sited in the aligned layout, including the fluctuation amplitudes and power spectrum, were found to be significantly different from those with staggered layout.  相似文献   

15.
Wind turbines arranged in a wind plant impact each other through their wakes. Wind plant control is an active research field that attempts to improve wind plant performance by coordinating control of individual turbines to take into account these turbine–wake interactions. In this paper, high‐fidelity simulations of a two‐turbine fully waked scenario are used to investigate several wake mitigation strategies, including modification of yaw and tilt angles of an upstream turbine to induce wake skew, as well as repositioning of the downstream turbine. The simulation results are compared through change relative to a baseline operation in terms of overall power capture and loading on the upstream and downstream turbine. Results demonstrated improved power production for all methods. Analysis of control options, including individual pitch control, shows potential to minimize the increase of, or even reduce, turbine loads.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Rolf‐Erik Keck 《风能》2015,18(9):1579-1591
This paper presents validation for using the standalone implementation of the dynamic wake meandering (DWM) model to conduct numerical simulations of power production of rows of wind turbines. The standalone DWM model is an alternative formulation of the conventional DWM model that does not require information exchange with an aeroelastic code. As a consequence, the standalone DWM model has significantly shorter computational times and lower demands on the user environment. The drawback of the standalone DWM model is that it does not have the capability to predict turbine loads. Instead, it should be seen as an alternative for simulating the power production of a wind farm. The main advantage of the standalone DWM model is the ability to capture the key physics for wake dynamics such as the turbine specific induction, the build‐up of wake turbulence and wake deficit in the wind farm, and the effect of ambient turbulence intensity and atmospheric stability. The predicted power production of the standalone DWM model is compared with that of full scale measurements from Horns Rev, Lillgrund, Nysted and Weingermeer wind farms. Overall, the difference between the models predictions and the reference data is on the order of 5%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects called the FLOw Redirection and Induction in Steady‐state (FLORIS) model. The FLORIS model predicts the steady‐state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limited number of parameters that are estimated based on turbine electrical power production data. In high‐fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Rolf‐Erik Keck  Ove Undheim 《风能》2015,18(9):1671-1682
This paper presents a computationally efficient method for using the dynamic wake meandering model to conduct simulations of wind farm power production. The method is based on creating a database, which contains the time and rotor‐averaged wake effect at any point downstream of a wake‐emitting turbine operating in arbitrary ambient conditions and at an arbitrary degree of wake influence. This database is later used as a look‐up table at runtime to estimate the operating conditions at all turbines in the wind farm, thus eliminating the need to run the dynamic wake meandering model at runtime. By using the proposed method, the time required to conduct wind farm simulations is reduced by three orders of magnitude compared with running the standalone dynamic wake meandering model at runtime. As a result, the wind farm production dynamics for a farm of 100 turbines at 10,000 different sets of ambient conditions run on a normal laptop in 1 h. The method is validated against full scale measurements from the Smøla and OWEZ wind farms, and fair agreement is achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The wind turbines within a wind farm impact each other's power production and loads through their wakes. Wake control strategies, aiming to reduce wake effects, receive increasing interest by both the research community and the industry. A number of recent simulation studies with high fidelity wake models indicate that wake mitigation control is a very promising concept for increasing the power production of a wind farm and/or reducing the fatigue loading on wind turbines' components. The purpose of this paper is to study the benefits of wake mitigation control in terms of lifetime power production and fatigue loading on several existing full‐scale commercial wind farms with different scale, layouts, and turbine sizes. For modeling the wake interactions, Energy Research Centre of the Netherlands' FarmFlow software is used: a 3D parabolized Navier‐Stokes code, including a k? turbulence model. In addition, an optimization approach is proposed that maximizes the lifetime power production, thereby incorporating the fatigue loads into the optimization criterion in terms of a lifetime extension factor.  相似文献   

20.
It is well accepted that the wakes created by upstream turbines significantly impact on the power production and fatigue loading of downstream turbines and that this phenomenon affects wind farm performance. Improving the understanding of wake effects and overall efficiency is critical for the optimisation of layout and operation of increasingly large wind farms. In the present work, the NREL 5‐MW reference turbine was simulated using blade element embedded Reynolds‐averaged Navier‐Stokes computations in sheared onset flow at three spatial configurations of two turbines at and above rated flow speed to evaluate the effects of wakes on turbine performance and subsequent wake development. Wake recovery downstream of the rearward turbine was enhanced due to the increased turbulence intensity in the wake, although in cases where the downstream turbine was laterally offset from the upstream turbine this resulted in relatively slower recovery. Three widely used wake superposition models were evaluated and compared with the simulated flow‐field data. It was found that when the freestream hub‐height flow speed was at the rated flow speed, the best performing wake superposition model varied depending according to the turbine array layout. However, above rated flow speed where the wake recovery distance is reduced, it was found that linear superposition of single turbine velocity deficits was the best performing model for all three spatial layouts studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号