首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
为了评价辅助蒸汽或者水的热量利用效果,热国系统的局部变化分析是非常必要的。以能量平衡为基础,提出了局部定量的原则和计算方法。该方法物理意义明确,结果.准确应用该方法对厂用抽汽及其利用系统 局部定量分析,给出了厂用抽汽的参数,回水率及回水位置对经济怀的影响,定量分析结果有助于汽轮机热力系统的节能改造。  相似文献   

2.
以常规热平衡法为基础,根据供热汽轮机凝汽循环和抽汽供热循环的实际耦合作用,推导出了考虑加热器散热损失的供热汽轮机热力系统等效热降与抽汽效率计算的矩阵方程,并将其应用于供热汽轮机新汽耦合做功的计算,其计算结果与常规热平衡法完全一致。本方法概念清楚,通用性好,为供热机组热力系统简捷快速地进行整体分析和局部定量计算奠定了基础。  相似文献   

3.
提高蒸汽初参数是提高机组热经济性的一个重要途径。以300 MW等级亚临界机组为例,当亚临界机组主蒸汽、再热蒸汽温度提升后,对现有加热器的换热能力进行计算分析,在充分发挥其换热能力的基础上,对回热抽汽参数进行优化设计,合理分配各段抽汽参数,避免了4台加热器的更换;就抽汽参数优化对汽轮机热耗率的影响进行了定量计算。通过回热抽汽参数优化设计,减少项目投资600余万元,降低汽轮机热耗率1.72‰。  相似文献   

4.
热网加热器是热力系统供热机组的重要组成部分,它是利用汽轮机的抽汽、减温减压的锅炉蒸汽或其它热源来加热热力系统中的网路回水和工业生产等用热水网路回水的加热设备。文中介绍热网加热器的主要结构选型设计、性能及参数、设计计算方法及设计要点,同时还介绍了热网加热器所配备的附件。  相似文献   

5.
核电汽轮机高压缸分缸压力对汽轮机输出功率和热耗率等参数具重要意义。选取某1400MW核电汽轮机为研究对象,针对核电汽轮机大部分处于湿蒸汽区的特点提出改进的弗留格尔公式,并采用遗传算法对5种不同高压缸分缸压力工况下的抽汽压力进行优化,分析了高压缸分缸压力对汽轮机输出功率及热耗率的影响。发现各抽汽口最佳抽汽压力和各加热器的抽汽量也随着高压缸分缸压力的降低而减少;核电汽轮机输出功率随高压缸分缸压力先增大后减小,而热耗率则先减小后增大,存在一最佳分缸压力;采用遗传算法所得优化方案能够增加汽轮机发电功率,减小热耗率。  相似文献   

6.
一、概述 供热式汽轮机是指既供电力或动力,又拱热的汽轮机,也称热电联产汽轮机。它包括背压式、抽汽凝汽式、抽汽背压式和低真空凝汽式汽轮机。背压式汽轮机用其排汽供热。抽汽凝汽式汽轮机是从汽轮机某一中间(?)抽出具有一定压力的部分蒸汽供热,双抽汽汽轮机可向热用户提供两种不同参数的汽源。抽汽背压式汽轮机则以某一压力的抽汽和排汽同时供热。低真空凝汽式汽轮机是利用排汽加热热网水供暖。  相似文献   

7.
电站加热器的运行状态对机组的煤耗率有着重要影响,这体现在加热器上端差、下端差和抽气压损等方面.以某厂300MW火电机组凝汽式汽轮机热力系统为例,结合抽汽压损与机组煤耗率之间的计算模型,得出加热器抽汽压损与煤耗率之间的具体关系,并绘制成曲线.分析影响机组热经济性的抽汽压损强度系数,得出抽汽压损强度系数、煤耗率和负荷之间的关系.给出机组运行中需重点监测的对象,为机组的最优运行、改造工作奠定理论基础.  相似文献   

8.
中小型热电厂的热力系统为力求简单,厂用汽较多采用来自汽轮机的工业抽汽口或背压机排汽,而工业抽汽压力往往高于热电厂自身厂用汽的压力,传统上采用阀门节流减压,造成了节流损失。文章介绍小背压机实施热功联产差压作功的技术应用,并就高背压和低背压两方案行了分析比较。  相似文献   

9.
二次再热超临界机组热力系统的全方位线性分析法   总被引:1,自引:0,他引:1       下载免费PDF全文
李运泽  杨献勇  罗锐 《热能动力工程》2002,17(3):258-260,284
建立了计算锅炉吸热量、汽轮机作功、凝汽器放热量的线性模型,并通过分析抽汽和各种附加汽水成分对热力系统质量及热量平衡的作用和影响,得出二次再热超临界机组质热平衡关系的快速建模方法及各种附加成分的线性分析方法,用线性方法实现了对二次再热超临界机组锅炉吸热量、汽轮机功率及凝汽器放热量的全面分析与计算。  相似文献   

10.
基于矩阵法对火电机组热力系统的给水焓升分配问题进行了分析。运用矩阵热平衡方程式推导出了抽汽率的矩阵表达式,并代入汽轮机做功方程和热耗量计算式中,得到了完全与电厂热力系统中各节点参数有关的汽轮机效率的矩阵表达式。以该效率表达式为目标函数,根据相应的约束条件对某300MW火电机组热力系统的给水焓升分配进行了优化。该优化方法能够直观解释给水焓升分配的原理,同时算例分析表明该方法有效可行,可针对不同机组的特点对其热力系统给水焓升进行最佳分配。  相似文献   

11.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

12.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

13.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

14.
This paper presents the exergy analysis results for the production of several biofuels, i.e., SNG (synthetic natural gas), methanol, Fischer–Tropsch fuels, hydrogen, as well as heat and electricity, from several biowastes generated in the Dutch province of Friesland, selected as one of the typical European regions. Biowastes have been classified in 5 virtual streams according to their ultimate and proximate analysis. All production chains have been modeled in Aspen Plus in order to analyze their technical performance. The common steps for all the production chains are: pre-treatment, gasification, gas cleaning, water–gas-shift reactions, catalytic reactors, final gas separation and upgrading. Optionally a gas turbine and steam turbines are used to produce heat and electricity from unconverted gas and heat removal, respectively. The results show that, in terms of mass conversion, methanol production seems to be the most efficient process for all the biowastes. SNG synthesis is preferred when exergetic efficiency is the objective parameter, but hydrogen process is more efficient when the performance is analyzed by means of the 1st Law of Thermodynamics. The main exergy losses account for the gasification section, except in the electricity and heat production chain, where the combined cycle is less efficient.  相似文献   

15.
The thermal decomposition of limestone has been selected as a model reaction for developing and testing an atmospheric open solar reactor. The reactor consists of a cyclone gas/particle separator which has been modified to let the concentrated solar energy enter through a windowless aperture. The reacting particles are directly exposed to the solar irradiation. Experimentation with a 60 kW reactor prototype was conducted at PSI's 90m2 parabolic solar concentrator, in a continuous mode of operation. A counter-current flow heat exchanger was employed to preheat the reactants. Eighty five percent degree of calcination was obtained for cement raw material and 15% of the solar input was converted into chemical energy (enthalpy).The technical feasibility of the solar thermal decomposition of limestone was experimentally demonstrated. The use of solar energy as a source for high-temperature process heat offers the potential of reducing significantly the CO2 emissions from lime producing plants. Such a solar thermochemical process can find application in sunny rural areas for avoiding deforestation.  相似文献   

16.
液压系统常见的故障诊断及处理   总被引:2,自引:0,他引:2  
任何工程机械式液压设备使用时出现故障是不可避免的。但是怎样确定故障的原因及找到好的解决方法,这是使用者最关心的问题。讲述了液压系统常见的故障及其排除方法。  相似文献   

17.
Trigeneration is defined as the production of three useful forms of energy—heat, cold and power—from a primary source of energy such as natural gas or oil. For instance, trigeneration systems typically produce electrical power via a reciprocating engine or gas turbine and recover a large percentage of the heat energy retained in the lubricating oil, exhaust gas and coolant water systems to maximize the utilization of the primary fuel. The heat produced can be totally or partially used to fuel absorption refrigerators. Therefore, trigeneration systems enjoy an inherently high efficiency and have the potential to significantly reduce the energy-related operation costs of facilities. In this paper, we describe a model of characterization of trigeneration systems trough the condition of primary energy saving and the quality index, compared to the separate production of heat, cold and power. The study highlights the importance of the choice of the separate production reference system on the level of primary energy saving and emissions reduction.  相似文献   

18.
Increasing awareness of environmental problems caused by the current use of fossil fuel-based energy, has led to the search for alternatives. Hydrogen is a good alternative and the cyanobacterium Anabaena sp. PCC 7120 is naturally able to produce molecular hydrogen, photosynthetically from water and light. However, this H2 is rapidly consumed by the uptake hydrogenase.This study evaluated the hydrogen production of Anabaena sp. PCC 7120 wild-type and mutants: hupL (deficient in the uptake hydrogenase), hoxH (deficient in the bidirectional hydrogenase) and hupL/hoxH (deficient in both hydrogenases) on several experimental conditions, such as gas atmosphere (argon and propane with or without N2 and/or CO2 addition), light intensity (54 and 152 ??Em−2s−1), light regime (continuous and light/dark cycles 16 h/8 h) and nickel concentrations in the culture medium.In every assay, the hupL and hupL/hoxH mutants stood out over wild-type cells and the hoxH mutant. Nevertheless, the hupL mutant showed the best hydrogen production except in an argon atmosphere under 16 h light/8 h dark cycles at 54 ??Em−2s−1 in the light period, with 1 ??M of NiCl2 supplementation in the culture medium, and under a propane atmosphere.In all strains, higher light intensity leads to higher hydrogen production and if there is a daily 1% of CO2 addition in the gas atmosphere, hydrogen production could increase 5.8 times, related to the great increase in heterocysts differentiation (5 times more, approximately), whereas nickel supplementation in the culture medium was not shown to increase hydrogen production. The daily incorporation of 1% of CO2 plus 1% of N2 did not affect positively hydrogen production rate.  相似文献   

19.
La–Fe–B hydrogen-storage alloys were prepared using a vacuum induction-quenching furnace with a rotating copper wheel. The thermodynamic and kinetic properties of the La–Fe–B hydrogen-storage alloys were investigated in this work. The P–C–I curves of the La–Fe–B alloys were measured over a H2 pressure range of 10−3 MPa to 2.0 MPa at temperatures of 313, 328, 343 and 353 K. The P–C–I curves revealed that the maximum hydrogen-storage capacity of the alloys exceeded 1.23 wt% at a pressure of approximately 1.0 MPa and temperature of 313 K. The standard enthalpy of formation ΔH and standard entropy of formation ΔS for the alloys' hydrides, obtained according to the van't Hoff equation, were consistent with their application as anode materials in alkaline media. The alloys also exhibited good absorption/desorption kinetics at room temperature.  相似文献   

20.
The mineralogical composition of intraseam layers from Lofoi lignite deposits (northwest Greece) is the subject of the present study. The samples were examined by means of X-ray diffraction (XRD), thermo-gravimetric (TG/DTG) and differential thermal analysis (DTA), and Fourier transform infrared (FT-IR) spectrometry. The clay minerals prevail in most samples, with illite-muscovite being the dominant phase, and kaolinite and chlorite being the other major clay components. No smectite was found. Quartz and feldspars, dominate in two cases. The studied materials are characterized as clays to clayey sands, showing significant similarities with the intraseam layers of the adjacent Achlada lignite deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号