首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
An investigation on the effects of solid particles on boiling heat transfer enhancement is performed. The range of particle diameter is from millimeter to nanometer. The experimental results show that boiling heat transfer can be enhanced greatly by adding the solid particle into the liquid whether in fixed particle bed or in fluidized particle bed. The boiling enhancement is closely related to the particle size, the initial bed depth and the heat flux applied. The experiments show that boiling characteristics are greatly changed when a particle layer is put on the heated surface. The major effects of fixed particle bed on nucleate pool boiling heat transfer are the nucleation, bubble moving and thermal conductivity effect. A boiling heat transfer correlation is obtained to predict the boiling heat transfer coefficients in a liquid saturated porous bed. A volumetric convection mechanism of boiling heat transfer enhancement by fluidized particles is proposed. The calculated results from the model suggested in this paper agree reasonably with the experimental values.  相似文献   

2.
A pulsating fluidized bed is operated with two sequential durations designated as an on‐period with injecting fluidization gas and an off‐period without it. The heat transfer coefficient between a vertically immersed heater and bed in a pulsating fluidized bed is measured under various pulse cycles and fluidized particles. The obtained results are compared with those in a normal fluidized bed with continuous fluidization air injection. The relationship between heat transfer coefficients and bubble characteristics, evaluated using a digital video camera, has also been investigated. For certain fluidized particles and operating pulse cycles, the fluidization of particles and the increment of heat transfer coefficients can be obtained under a mean air velocity based on a pulse cycle duration smaller than the minimum fluidization air velocity in a normal fluidized bed. Under the pulse cycles where a static bed through the whole bed is formed in the off‐period duration, the improved heat transfer rate over that in a normal fluidized bed can be measured. This may be attributed to large bubble formation. As heat transfer in the pulsating fluidized bed is obstructed with increasing time to keep a static bed due to the excessive off‐period duration, it is indicated that there is an optimum off‐period duration based on the heat transfer rate. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(4): 307–319, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10038  相似文献   

3.
Heat transfer and pressure drop were experimentally investigated for ice-water slurries flowing turbulently in a 24.0 mm internal diameter, 4.596 m long, horizontal, stainless steel tube. The slurry velocity of the experiments was varied from 2.8 to 5.0 m/s which encompassed the range of applicability to ice-water slurry-based district cooling systems. The previously reported phenomenon of flow relaminarization in ice-water slurries was observed in the current experiments. A reduction in frictional pressure drop associated with the flow relaminarization was measured as the ice fraction increased. An ice fraction of 4% marked a division in the rate of reduction, and a pressure-drop correlation equation was developed for ice fractions above 4%. Heat transfer coefficients were determined over the velocity range of the experiments. Consistent with the flow relaminarization, the heat transfer coefficient decreased with increasing ice fraction. A correlation equation was also developed for heat transfer coefficients at ice fractions above 4%.  相似文献   

4.
Heat transfer coefficients were measured on tube bundles of fundamental layouts including in‐line layouts embedded horizontally in a liquid‐fluidized bed. Tested tube layouts were single tubes, transverse single tube rows, longitudinal single tube rows, and in‐line arranged tube bundles. A total of 7 kinds of particles were used. Comparisons of the experimental data showed a good agreement with the heat transfer correlation developed for staggered layouts, when the average liquid velocity through each tube bundle was used as the reference velocity for the particle Reynolds number. Distribution of the local heat transfer coefficient was also investigated around tubes. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20245  相似文献   

5.
Liquid–solid fluidized bed heat exchangers are attractive ice crystallizers since they are able to mitigate ice crystallization fouling and exhibit high heat transfer coefficients. Experiments show that the fouling removal ability of stationary fluidized beds increases with decreasing bed voidage (95–80%) and increasing particle size (2–4 mm). The removal of ice crystallization fouling appears to be more effective in circulating fluidized beds, especially at high circulation rates. Fouling removal is realized by both particle–wall collisions and pressure fronts induced by particle–particle collisions. A comparison between ice crystallization experiments and impact characteristics shows that the removal rate is proportional to the impulse exerted on the wall. A model based on these phenomena is discussed and predicts the transition temperature difference for ice crystallization fouling in both stationary and circulating fluidized beds with an average absolute error of 9.2%.  相似文献   

6.
流化床表面传热系数的直接数值模拟   总被引:2,自引:0,他引:2  
采用数值试验方法对表面传热系数进行了直接数值模拟.在流化床表血传热系数模型中,流体相的运动和传热规律以Euler方法描述,对固体颗粒相运动和传热规律则以离散单元法(DEM)在颗粒层次上进行描述.利用该模型,对一个二维鼓泡流化床内瞬时和局部传热系数进行了模拟,得到了瞬态表面传热系数随流化速度的变化规律,以及局部传热系数随高度的变化规律.该规律与Ozkaynak等人的实验研究结果以及Syamlal等人采用颗粒相拟流体模型的数值模拟结果相一致,但与双流体数学模型相比,该模型所需主观假设较少且适用范围更广.  相似文献   

7.
Bed voidage was measured in liquid‐fluidized beds having tube bundles embedded vertically in beds, and the heat transfer coefficient was measured on the outer surface of the tube. There were six kinds of test channels used, and a total of nine types of particles of glass and ceramics were tested. The measured bed voidage agreed well with those developed for in‐column fluidization, when the hydraulic equivalent diameter was used. Measured heat transfer coefficients on the vertically embedded tube bundles were higher than those on the vertically embedded single tubes, the calculated values for the in‐column fluidization, and the calculated values for the horizontally embedded tube bundles. Correlations for predicting the heat transfer coefficient were derived for the vertically embedded tube bundles and single tubes. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20267  相似文献   

8.
Liquid/solid fluidized bed heat exchangers have originally been developed for desalination plants. However, due to their substantial benefits with respect to significantly improved heat transfer and fouling reduction, successful applications also exist in areas such as petrochemical, minerals and food processing as well as in the paper and power industries. The excellent performance of fluidized bed heat exchangers is related to the interaction between particles and heat transfer surface and to mixing effects in the viscous sublayer. In this paper, the results of experimental investigations on heat transfer for a wide range of Newtonian and non-Newtonian fluids are presented. New design equations have been developed for the prediction of bed voidage and heat transfer coefficients. The predictions of these correlations and of numerous correlations recommended by other authors are compared with a large database compiled from the literature.  相似文献   

9.
Heat transfer and hydrodynamic investigations have been conducted in a 0.108 m internal diameter bubble column at ambient conditions. The column is equipped with seven 19mm diameter tubes arranged in an equilateral triangular pitch of 36.5 mm. A Monsanto synthetic heat transfer fluid, Therminol-66 having a viscosity of 39.8 cP at 303 K, is used as a liquid medium. Magnetite powders, average diameters 27.7 and 36.6 μm, in five concentrations up to 50 weight percent in the slurry, are used. As a gas phase, industrial grade nitrogen of purity 99.6 percent is employed.Gas holdup in different operating modes and regimes have been measured for the two- and three-phase systems over a superficial gas velocity range up to 0.20 m/s in the semi-batch mode. Heat transfer coefficients are measured at different tube locations in the bundle at different radial and vertical locations over a range of operating conditions. All these data are compared with the existing literature correlations and models. New correlations are proposed.  相似文献   

10.
The flow and convective heat transfer behaviors of microencapsulated phase change material (MPCM) slurries in a horizontal circular tube have been experimentally investigated. The slurry consisted of microencapsulated 1-bromohexadecane (C16H33Br) and water, with the mass fractions of MPCM varying from 5% to 27.6%. The pressure drop and local heat transfer coefficients were measured, and the influences of capsule fractions, heating rates, and flow structures on heat transfer performance were also studied. Heat transfer coefficients measured for MPCM slurry are significantly higher than for those for single-phase fluid flow in laminar flow conditions, but exhibit more complicated phenomena at low turbulent conditions. Moreover, a new simple heat transfer correlation equation was proposed that accurately predicts the local heat transfer coefficients of laminar MPCM slurry flow in a horizontal circular tube.  相似文献   

11.
This paper presents a series of experimental results on a passive augmentation technique of boiling heat transfer by supplying solid particles in liquid. A cylindrical heater 0.88 mm in diameter is placed in saturated water, in which a lot of mobile particles exist, and the nucleate and film boiling heat transfer characteristics are measured. Particle materials used were alumina, glass, and porous alumina, and the diameter ranged from 0.3 mm to 2.5 mm. Particles are fluidized by the occurrence of boiling without any additive power, and the heat transfer is augmented. The maximum augmentation ratio obtained in this experiment reaches about ten times the heat transfer coefficient obtained in liquid alone. The augmentation ratio is mainly affected by the particle material, diameter, and the height of the particle bed set at no boiling condition. The augmentation mechanism is discussed on the basis of the experimental results. © 2001 Scripta Technica, Heat Trans Asian Res, 31(1): 28–41, 2002  相似文献   

12.
流化床气固传热特性的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对汉化床气固传热特性的简单分析,依据稳态工况活动段区气体温度分布求取了有效传热系统。实验结果和传统经验式数值吻合,从而论证了气固传热特性分析的合理性及计算流化床气固有效传热系数的可行性,为研究流化床气固传热特性的提供参考。  相似文献   

13.
流化床-煤粉复合燃烧锅炉的炉膛传热计算方法   总被引:2,自引:2,他引:0  
赵广播  秦裕琨 《动力工程》2000,20(4):740-744,759
针对流化床-煤粉复合燃烧锅炉的特点,在综合考虑流化床、火焰和受热面之间换热的基础上,推导了流化床-煤粉复合燃烧锅炉炉膛传热计算的基本方程,得到了复合燃烧锅炉炉膛传热计算的零维模型半径验法。以某75t/h树皮流化床-煤粉复合燃烧锅炉为例,进行了炉膛传热计算。图1表6参5  相似文献   

14.
Wall-to-bed heat transfer coefficients to pulp mill Kraft black liquor in a nominal 25-mm tubular, liquid?solid fluidized bed have been determined. The fluidizing particles were stainless steel balls of 4.0, 4.76, and 6.35 mm diameter. The heat transfer coefficients were determined for conditions where porosity, bulk temperature, and liquor concentration were varied. The best correlation was obtained when the data were split into two groups of low and high liquor concentrations, i.e., 30?40% and 50?65% total dissolved solids. The data were also compared with the predictions obtained from 26 published correlations, of which the best 10 are presented and discussed in this article. The results of this investigation are relevant to other fluidized bed systems with high liquid viscosity, such as sugar concentrations, hydrocarbons, and polymers.  相似文献   

15.
INTRODUCTIONThemethodhowtodealwiththedomesticandindustrialwasteswithoutfurthercontaminationisoneofthemostimportantenvironmentalissues.Fluidizedbedcombustor(FBC)hasadvantagesofhighcombustionefficiency)lowpollution,convenienceinpreprocessingbeforefedin...  相似文献   

16.
Heat transfer to an immersed sphere from fluidized uncoated sand particles of different mean size and size distribution is compared with that from coated sand particles of equal size extracted from two full-scale fluidized bed boilers for different superficial gas velocities and mean particle diameters from 350 to 646 μm. The thin coating on the sand bed particles from full-scale boilers was found to have a significant effect on the heat transfer coefficient, while the particle size distributions, as well as coating thickness, had little or no influence on the heat transfer coefficients for the conditions investigated.  相似文献   

17.
Heat transfer on tube bundles embedded horizontally in a liquid‐fluidized bed was investigated experimentally. In the experiment, a total of 5 kinds of tube bundles in an equilateral triangular staggered arrangement, including a single tube, was used. Tested particles were of glass and ceramics, and their diameter range was from 2.1 to 6.0 mm. It was found that the distribution of local heat transfer coefficients around a tube depends not on the kind of particles, but on the tube pitch only, when a good fluidizing condition is maintained. Based on the experimental data, a new method was proposed to predict average heat transfer coefficient, which can be applicable for tube bundles having a tube pitch to diameter ratio of 1.2 to infinity (single tube). © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(2): 85–98, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20048  相似文献   

18.
An analogy was found between the frictional pressure drop and the heat transfer in liquid–solid circulating fluidized beds. This investigation is based on the predicting correlations for the particle holdup, the heat transfer coefficient, and the pressure drop, which were all developed by the authors. When the heat transfer coefficients were expressed in terms of the modified j‐factor, then a close mutual relationship was observed between the modified j‐factor and the friction factor of the pressure drop due to liquid and particle flow. A correlation to express this mutual relationship was derived, which consists of the density ratio of particle to liquid and the non‐dimensional riser diameter. The heat transfer coefficient predicted from the derived correlation agreed well with the experimental data by the authors, and with existing data. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20246  相似文献   

19.
A heat exchanger with a shallow gas–solid fluidized bed was experimentally studied in order to analyze energy recovery from solid particles leaving a combustion process. The experiments were carried out with and without vertical baffles in a fluidized bed with immersed horizontal tubes filled with water, in a counter flow arrangement. Two particle diameters (254 and 385 μm), two solid flow rates (50 and 80 kg/h) and two gas flow rates (46 and 50 kg/h) were tested. The bed temperature along the equipment length, the mass flow rate and the inlet and outlet temperatures of solid particles, air and water were measured in order to obtain the bed-tube heat transfer coefficient and the heat exchanger effectiveness. An increment of about 55% in the heat transfer coefficient and higher values of the heat exchanger effectiveness, in experiments with the presence of baffles, was verified. The experimental results also showed that the suspension-wall heat transfer coefficient increased considerably with the solid flow rate and also when the particle diameter decreased.  相似文献   

20.
In the present paper the effect of pressure on bed‐to‐wall heat transfer in the riser column of a pressurized circulating fluidized bed (PCFB) unit is estimated through a modified mechanistic model. Gas–solid flow structure and average cross‐sectional solids concentration play a dominant role in better understanding of bed‐to‐wall heat transfer mechanism in the riser column of a PCFB. The effect of pressure on average solids concentration fraction ‘c’ in the riser column is analysed from the experimental investigations. The basic cluster renewal model of an atmospheric circulating fluidized bed has been modified to consider the effect of pressure on different model parameters such as cluster properties, gas layer thickness, cluster, particle, gas phase, radiation and bed‐to‐wall heat transfer coefficients, respectively. The cluster thermal conductivity increases with system pressure as well as with bed temperature due to higher cluster thermal properties. The increased operating pressure enhances the particle and dispersed phase heat transfer components. The bed‐to‐wall heat transfer coefficient increases with operating pressure, because of increased particle concentration. The predicted results from the model are compared with the experimentally measured values as well as with the published literature, and a good agreement has been observed. The bed‐to‐wall heat transfer coefficient variation along the riser height is also reported for different operating pressures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号