首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bifunctional electrocatalyst was fabricated by in-situ vertical growth of Ni(OH)2 nanosheets on nickel foam (NF), with subsequent accretion of nickel vacancy NiFe-LDHs (NivacFe-LDHs) by two step hydrothermal method. It was exhibited to be a high-efficiency overall water splitting performance with good stability. The low over-potentials of 292, 330, and 376 mV were acquired when the current density was selected as 50, 100, and 200 mA/cm2 for oxygen evolution reaction (OER) with a relatively low Tafel slope. It also achieved low over-potentials of 116 and 247 mV when the current densities were 10 and 200 mA/cm2 for hydrogen evolution reaction (HER), and Tafel slope was estimated to be 95.87 mV/dec. For the overall water splitting, NF–Ni(OH)2-NivacFe-LDHs needed only a low overpotential (291 mV) to achieve 25 mA/cm2 in 1 mol/L potassium hydroxide. The long-term testing of this electrode for 24 h chronopotentiometric test at 25 mA/cm2 demonstrated very eminent stability.  相似文献   

2.
Developing non-noble metal catalysts with excellent electrocatalytic performance and stability is of great significance to hydrogen production by water electrolysis, but there are still problems of low activity, complex preparation and high cost. Herein, we fabricated a novel Ni3S2/Ni(OH)2 dual-functional electrocatalyst by a one-step fast electrodeposition on nickel foam (NF). While maintaining the electrocatalytic performance of Ni3S2, the existence of heterostructure and Ni(OH)2 co-catalyst function greatly improves the overall water splitting performance of Ni3S2/Ni(OH)2–NF. Hence, It shows a low overpotential of 66 mV at 10 mA cm?2 for HER and 249 mV at 20 mA cm?2 for OER. The dual-functional electrocatalyst needs only 1.58 V at 20 mA cm?2 when assembled two-electrode electrolytic cell. Impressively, the electrocatalyst also shows outstanding catalytic stability for about 800 h when 20 and 50 mA cm?2 constant current was applied, respectively which demonstrates a potential electrocatalyst for overall water splitting.  相似文献   

3.
Hindered by price and scarcity, the exploitation of supported Pt-based electrocatalysts with Pt single atoms or Pt nanoclusters is an alternative way to decrease the dosage of Pt and improve the electrocatalytic performance for hydrogen evolution reaction (HER) of water splitting. The anodization technology is used to modify the surface of nickel foam (NF) to form the porous NiF2 network structure. Then Pt nanodots interfaced with Ni(OH)2 (Pt/Ni(OH)2) hybrid on the anodized NF has been in-situ synthesized by a simple hydrothermal decomposition method. Results show that Pt nanodots on the substrate have good dispersion with the average size of 3 nm, and the Pt loading is only 0.229 mg cm−2. The prepared electrode exhibits the low overpotentials of 25.9 mV and 211 mV at the current densities of 10 and 100 mA cm−2, respectively, a small Tafel slope of 37.6 mV dec−1, and the excellent durability for HER. The porous network nanostructure of Pt/Ni(OH)2 hybrid, the large electrochemical surface area, the fast facilitated electron transport capability, and the firm adhesion of Pt nanodots with the anodized NF substrate contribute to the remarkable performance towards HER.  相似文献   

4.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

5.
Alkaline solution is considered to be more suitable for industrial application of hydrogen production by water electrolysis. However, most of the low-cost electrocatalyts such as Ni3S2 has poor ability to dissociate HO–H, resulting in unsatisfied hydrogen evolution performance in alkaline media. In this paper, a novel vermicular structure of Ni3S2–Ni(OH)2 hybrid have been successfully prepared on nickel foam substrate (v-Ni3S2–Ni(OH)2/NF) through a facile two-step containing hydrothermal and electrodeposition processes. The heterostructure consists of rod-like Ni3S2 and Ni(OH)2 nanosheets, in which Ni(OH)2 is coated on the surface of Ni3S2. This structure not only constructs a fast electron transfer channel but also possesses rich heterointerface, thus accelerating the Volmer step and allowing more active sites of Ni3S2 to functioning well. As a result, v-Ni3S2–Ni(OH)2/NF exhibited excellent electrocatalytic activity toward HER in 1.0 M KOH solution. It only needs 78 mV and 137 mV to drive current density of 10 mA cm−2 and 100 mA cm−2. Moreover, the catalytic stability of this electrocatalyst in alkaline solution is also satisfactory.  相似文献   

6.
Electrocatalytic water splitting for hydrogen production plays a vital role in the development of new energy field, but there is still a lack of low-content precious metal or cost-effective non-noble metal catalysts for the hydrogen evolution reaction (HER). Therefore, how to develop the catalysts with a smaller amount of precious metal to achieve higher performance is still a major challenge. Herein, we have fabricated Ru–Ni2P@Ni(OH)2/NF-2 heterostructure by phosphating Ni(OH)2/NF and then anchoring Ru on the surface through wet chemical strategy. Benefiting from its optimal ΔGH1 and synergistic effect, this Ru–Ni2P@Ni(OH)2/NF-2 catalyst shows superior electrocatalytic HER kinetics in alkaline electrolyte. A small overpotential of 31 mV is needed for this electrocatalyst to obtain the current densities of 10 mA cm?2 with remarkable durability over 24 h. This work provides a new strategy for the preparation of effective HER electrocatalyst with a low precious metal content.  相似文献   

7.
The introduction of different ions is an effective method for regulating electron distribution and increasing the electrocatalytic activity of spinel cobalt sulfide (Co3S4). However, the effect of doping different ions on water splitting performance has not been systematically clarified. Therefore, a detailed research is done to illuminate the doping of different ions on the water splitting performance of spinel cobalt sulfide MCo2S4 (M = Ni, Cu and Co) nanorods grown on Ni foam. To drive the electrocatalytic current of 50 mA/cm2 and 10 mA/cm2, the CuCo2S4/NF material only requires an overpotential of 240 mV for oxygen evolution reaction (OER) and an overpotential of 142 mV for hydrogen evolution reaction (HER). The results of density functional theory and experiment demonstrate that the strong water adsorption energy and the large electrochemical activity area make CuCo2S4/NF show good catalytic activity. The CuCo2S4/NF nanorods material presents superior electrochemistry performance with a small voltage 1.53 V. The water oxidation activity increases linearly before nonlinearly improving with the increasing of pH, indicating that the substrate changes from water to hydroxyl. It is noteworthy that CuCo2S4/NF will be transformed into amorphous oxide active species, which will act as a stable catalyst during the reaction.  相似文献   

8.
Co3S4 nanosheets on Ni foam (NS/NF) were prepared by sulfurization for various time after calcination of electrodeposited Co(OH)2. In our FE-SEM images, we observed that Co3S4 NS was vertically, or obliquely, deposited on the Ni foam. As a result, the structure contained more active sites, and active sites were highly accessible to the electrolyte for the hydrogen evolution reaction (HER). Furthermore, results of XPS and XRD analysis confirmed S-conversion from Co3O4 to Co3S4 during sulfurization. 3-Co3S4 NS/NF with sulfurization for 3 h exhibited the highest sulfur content, while Co3S4 began to desulfurize to Co9S8 after sulfurization for 4 h. The 3-Co3S4 NS/NF electrocatalyst showed a lowest overpotential of 93 mV at −10 mA/cm2, with a Tafel slope of −55.1 mV/dec in N2-purged 1 M KOH. Also, the single cell anion exchange membrane water electrolyzer (AEMWE) showed a high current density of 431 mA/cm2 with cell voltage 2.0 Vcell at 40–45 °C.  相似文献   

9.
Self-standing and hybrid MoS2/Ni3S2 foam is fabricated as electrocatalyst for hydrogen evolution reaction (HER) in alkaline medium. The Ni3S2 foam with a unique surface morphology results from the sulfurization of Ni foam showing a truncated-hexagonal stacked sheets morphology. A simple dip coating of MoS2 on the sulfurized Ni foam results in the formation of self-standing and hybrid electrocatalyst. The electrocatalytic HER performance was evaluated using the standard three-electrode setup in the de-aerated 1 M KOH solution. The electrocatalyst shows an overpotential of 190 mV at ?10 mA/cm2 with a Tafel slope of 65.6 mV/dec. An increased surface roughness originated from the unique morphology enhances the HER performance of the electrocatalyst. A density functional approach shows that, the hybrid MoS2/Ni3S2 heterostructure synergistically favors the hydrogen adsorption-desorption steps. The hybrid electrocatalyst shows an excellent stability under the HER condition for 12 h without any performance degradation.  相似文献   

10.
Exploring noble-free electrocatalyst for hydrogen evolution by electrolysis of water is significant. Herein, porous Ni(OH)2@Ni spherical particles are electrodeposited on carbon papers as efficient electrocatalysts for hydrogen evolution reaction (HER) from water. Due to the porous and composite structure, the HER activity of Ni(OH)2@Ni/CP is better than the single phase Ni or Ni(OH)2 particles on the carbon paper. The overpotential of Ni(OH)2@Ni/CP is 106 mV at the current density of 10 mA cm?2 and the Tafel slope is 88 mV dec?1. Moreover, the stability of the catalysts tested for 12 h is also good for HER. Furthermore, the small Rct (1.65 Ω) of Ni(OH)2@Ni/CP provides the evident for its excellent catalytic performance. The method of electrodeposition provides the controllable uniform size for porous spherical Ni(OH)2@Ni particles. Moreover, the Faradaic efficiency for hydrogen evolution is 100%.  相似文献   

11.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

12.
Studying cheap and efficient electrocatalysts is of great significance to promote the sluggish kinetics of oxygen evolution reaction (OER). Here, we adopted a simple two-step method to successfully prepare the 3D V–Ni3S2@CoFe-LDH core-shell electrocatalyst. The V–Ni3S2@CoFe-LDH/NF shows excellent OER performance with low overpotential (190 mV at 10 mA/cm2 and 240 mV at 50 mA/cm2), small Tafel slope (26.8 mV/dec) and good long-term durability. Excitingly, to reach the same current density, V–Ni3S2@CoFe-LDH/NF electrode even needs much smaller overpotential than RuO2. Furthermore, the outstanding OER activity of V–Ni3S2@CoFe-LDH/NF is ascribed to the following reasons: (1) V–Ni3S2 nanorod cores improve the conductivity and ensure the fast charge transfer; (2) CoFe-LDH nanosheets interconnected with each other provide more exposed active sites; (3) the unique 3D core-shell structures are favorable for electrolyte diffusion and gas releasing. Our work indicates that building 3D core-shell heterostructure will be a useful way to design good electrocatalysts.  相似文献   

13.
The development of self-supporting electrodes that exhibited both high efficiency and good durability remained a challenge in the field of hydrogen energy utilisation. Here, we designed a self-supporting 3D hierarchical porous electrode by filling carbon nanotubes (CNTs) loaded with Ni–P alloy into the framework of nickel foam (NF). Firstly, CNTs were decorated with a catalytically active Ni–P alloy via electroless plating (Ni–P@CNTs). Then, the Ni–P@CNTs were filled and anchored onto the framework of NF via electroplating to synthesise a self-supporting electrode (Ni–P@CNTs/NF). The Ni–P@CNTs/NF exhibited an excellent catalytic performance toward the hydrogen evolution reaction (HER) in 1 M KOH electrolyte, with an overpotential of 53 mV at 10 mA cm?2, a small Tafel slope of 101.56 mV dec?1 and excellent long-term durability. This facile and effective strategy might provide a new path to the design of self-supporting electrodes with enhanced HER catalytic.  相似文献   

14.
Synthesis of highly efficient, non-noble and bi-functional electrocatalysts is exceedingly challenging and necessary for water splitting devices. In this work, three-dimensional spherical Ni(OH)2/NiCo2O4 heterojunctions are prepared by a one-step hydrothermal method and the hybrids are explored as efficient electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in an alkaline electrolyte via tuning different Ni/Co atomic ratios of heterojunctions. The optimized Ni(OH)2/NiCo2O4 (S (1:1)) exhibits high electrocatalytic activity with an ultralow over-potential of 189 mV at 10 mA cm−2 for the HER. With regard to the OER, the over-potential of the as-synthesized S (1:1) heterojunction is only 224 mV at the current density of 10 mA cm−2. The improved catalytic performance of the Ni(OH)2/NiCo2O4 heterojunctions is attributed to the chemical synergic combining of Ni(OH)2 and NiCo2O4, large specific surface area for exposing more accessible active sites, and heterointerface for activating the intermediates that facilitates electron/electrolyte transport. The prepared catalyst exhibits good durability and stability in HER and OER catalyzing conditions. This study provides a feasible approach for the building of highly efficient bifunctional water splitting electrocatalysts and stimulates the development of renewable energy conversion and storage devices.  相似文献   

15.
Interface engineering is considered as an effective strategy to improve the hydrogen evolution reaction (HER) performance of electrocatalysts. Herein, the Ni0.85Se/Ni3S2 heterostructure grown on nickel foam (NF) is synthesized via successive wet-chemical processes. The obtained Ni0.85Se/Ni3S2 heterostructure is firstly investigated as an HER electrocatalyst in alkaline media and exhibits more excellent electrochemical properties over Ni3S2. And it delivers a low overpotential of 145 mV at a current density of ?10 mA cm?2, and superior stability. Based on the analysis of high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectra (XPS), the enhanced HER activity is due to the modulation of surface electronic structure, ascribing from the construction of heterointerface between Ni0.85Se and Ni3S2. Meanwhile, the Ni0.85Se/Ni3S2 heterostructure prepared in this work is also verified to be employed as a promising alternative to noble metal catalysts in HER.  相似文献   

16.
Transition metal dichalcogenides (TMDs) have attracted significant research interest due to its promising performance in hydrogen evolution reaction (HER). Synergistic effect between materials interface can improve the electrocatalytic properties. In this work, the WS2–CoS2 heterostructure supported on carbon paper (CP) was elaborately fabricated by a three-step method. Owing to the synergistic effect, WS2–CoS2 heterostructure exhibits an excellent electrocatalytic activity with a low overpotential of 245 mV at 100 mA/cm2 and a small Tafel slope of 270 mV/dec toward HER. We demonstrate that the increased specific surface area and conductivity of the heterostructure play a key role in enhancing the overall catalytic efficiency. Moreover, the crystal lattice distortion in the heterostructure could induce charge redistribution and improve electron transfer efficiency, which may also benefit the whole HER activity.  相似文献   

17.
Herein, we report an inexpensive synthesis of sonochemical nickel and iron (M = Ni, Fe) doped Cu2ZnSnS4 (CZTS) and their utility as a nanoelectrodes for improved electrocatalytic water splitting performance. The as-synthesized electrode materials were characterized further by Transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman and X-ray photoelectron (XP) spectroscopic studies. Significantly, Ni doped CZTS electrocatalyst exhibits low overpotential approximately 214 and 400 mV for the hydrogen evolution reactions (HER) in 0.5 M H2SO4 and 1 M KOH electrolyte solutions respectively, and 1.29 V vs RHE for the oxygen evolution reactions (OER) in 1 M KOH at 10 mA/cm2 current density. Small Tafel slopes and tested durability for longer time i.e. upto 500 min for water splitting, demonstrates that Ni doped CZTS is efficient bifunctional electrocatalyst having high activity along with extraordinary current/potential stability. Moreover, Fe doped CZTS electrocatalyst shows relatively poor response, i.e. overpotential 300 mV in 0.5 M H2SO4 and 445 mV in 1.0 M KOH towards HER and overpotential 1.54 V for the OER in 1 M KOH reaches at 10 mA/cm2. This highly efficient bifunctional electrocatalysts that can meet the existing energy anxiety.  相似文献   

18.
A new self-supported nickel-cobalt phosphide (NiCoP) on Ni foam (NiCoP/NF) is fabricated by simple immersion in Co(NO3)2 solution followed by subsequent phosphorization. NiCoP/NF displays intertwined and porous columnar morphology derived from topological transformation of corresponding columnar amorphous hydroxides precursor. NiCoP/NF manifests the most prominent hydrogen evolution reaction (HER) performance in both 0.5 M H2SO4 and 1 M KOH with the overpotentials of 49 and 57 mV to achieve 10 mA cm?2, respectively. Also, NiCoP/NF showed excellent oxygen evolution reaction (OER) performance, requiring 256 mV to achieve 10 mA cm?2, even superior to that of RuO2 and IrO2. Such impressive HER performance of NiCoP/NF is mainly attributed to the collective effects of enlarged surface area and enriched exposed active sites, affording faster charge transfer kinetic in HER process. This simple immersion method offers a new insight to design cost-effective and efficient electrocatalysts for large scale application.  相似文献   

19.
Interface engineering has aroused vitally widespread concern since it could be an effective strategy for exploring high-performance and low-cost water oxidation electrocatalysts. Herein, we report a hetero-structured Ni3(NO3)2(OH)4/CeO2/NF (NNO/CeO2/NF) electrode, exhibiting superior performance owning to the NO3? anion substitution for the OH? in nickel hydroxide to form Ni3(NO3)2(OH)4, together with its interface synergy with ceria. In alkaline solution, the NNO/CeO2/NF electrocatalyst could catalyze the OER with an overpotential of 330 mV to approach 50 mA cm?2. Also, it needs only an overpotential of 120 mV to reach 10 mA cm?2 for HER. Additionally, when a standard two-electrode water electrolyzer is fabricated by employing NNO/CeO2/NF as both the cathode and anode, it can generate 10 mA cm?2 at 1.64 V and operate steadily without performance degradation after 25 h. This research provides a novel perspective for reasonable design of advanced catalytic materials with improvements in the field of electrocatalysis.  相似文献   

20.
Nickel-based catalysts have attracted tremendous attention as alternatives to precious metal-based catalysts for electrocatalytic hydrogen evolution reaction (HER) in virtue of their conspicuous advantages such as abundant reserves and high electrochemical activity. Nevertheless, a great challenge for Ni-based electrocatalyst is that nickel sites possess too strong adsorption for key intermediates H1, which severely suppresses the hydrogen-production activities. Herein, we report a hierarchical architecture Cu/Ni/Ni(OH)2 consisting of dual interfaces as a high-efficient electrocatalyst for HER. The Cu nanowire backbone could provide geometric spaces for loading plenty of Ni sites and the formed Ni/Cu interface could effectively weakened the adsorption intensity of H1 intermediates on the catalyst surface. Moreover, the H1 adsorption could be further controlled to appropriate states by in-situ formed Ni(OH)2/Ni interface, which simultaneously promotes water adsorption and activation, thus both Heyrovsky and Volmer steps in HER could be obviously accelerated. Experimental and theoretical results confirm that this interface structure can promote water dissociation and optimize H1 adsorption. Consequently, the Cu/Ni/Ni(OH)2 electrocatalyst exhibits a low overpotential of 20 mV at 10 mA cm?2 and an ultralow Tafel slope of 30 mV dec?1 in 1.0 M KOH, surpassing those of reported transition-metal-based electrocatalysts and even the prevailing commercial Pt/C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号