首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用实验方法,研究了不同的内螺纹分布和油浴温度等因素对热管换热特性的影响。实验选用的热管材料为紫铜,外径16 mm,壁厚3 mm,长度为200 mm,传热工质为水,充液率为20%。实验结果表明:在同一油浴温度下,内螺纹重力管的启动特性要优于光滑重力热管。对比不同油浴温度下,布置内螺纹能够有效地降低热管的工作温度。实验选型的内螺纹仅布置在蒸发段不会提高热管的换热系数,而在绝热段和冷凝段布置内螺纹则能够使换热系数显著提升,且随油浴温度的增加,换热系数线性增加。  相似文献   

2.
针对生产过程中低品位能量回收,设计了带有环状管蒸发器的不锈钢水工质重力型分离式热管,环状管由31.6 mm管径内管热水加热,环空间隙为15.0 mm,可视化地研究了26 kPa蒸发压力,0~90 °倾斜角度下多个充注率环状管蒸发器的壁温特性。结果表明:该类热管的环状管蒸发器运行时存在一高温区,随倾角增加而扩大;环状管内蒸发侧平均表面换热系数随倾角增大先增后减、再增大,与沸腾流型随角度发生转变有密切关联;与一些相似文献进行了对比,发现环状管蒸发器与普通重力型热管在换热性能均在10~20 °倾角达到极大值,而环状管蒸发器则在90 °时达到了另一极大值。  相似文献   

3.
一种新型微热管传热性能的实验研究   总被引:6,自引:0,他引:6       下载免费PDF全文
对一种新型的平板式微热管一零切角曲面微热管进行了实验研究。以热阻为基础,研究不同倾角、工质、充液比下微热管的热性能。为便于分析,将热管总热阻分解为4个部分:加热热阻、蒸发段热阻、冷凝段热阻和热沉热阻。通过实验得出如下结论:微热管总热阻的主要变化因素是冷凝段热阻和蒸发段热阻;与相应的无工质平板式换热器相比,实验件主要热阻变为热沉热阻.蒸发段和冷凝段热阻所占比例较低。根据不同的充液比和倾角。微热管传热极限分别由局部干烧和核态沸腾向膜态沸腾转化引起。实验表明。这种新型的微热管具有良好的应用前景,但是对于其机理还需要更深入的研究。  相似文献   

4.
A bent copper–water heat pipe with grooved inner surface has been investigated experimentally. A comparison between the bent and the straight heat pipes was performed at different inclination angle. Experimental results show that there is a small temperature difference between the condenser of the straight and that of the bent at the vertical orientation. The temperature difference increases as an inclination angle increases. Furthermore, the response time increases as the inclination angle increases. The thermal response of the straight to a sudden heat load is slightly faster than that of the bent. However, as the inclination angle increases to after the horizontal, the heat flux at the condensers decreases nonlinearly and the response time increases nonlinearly. A two-phase flow map has been proposed to explain the nonlinear performance of the thermal response and the heat flux, based on force balance among gravity, capillary, friction and buoyancy force acting on the working fluids. The nonlinear performance of the thermal response and the heat flux results from the capillary blocking due to formation of liquid bridge of two-phase flow. It was also found that the bent heat pipe is more sensitive to the change of the inclination angle than the straight in terms of the thermal response time and the heat flux of the condenser. The heat flux of the bent decreases faster than that of the straight after the horizontal orientation.  相似文献   

5.
A study on the new separate heat pipe refrigerator and heat pump   总被引:2,自引:0,他引:2  
Z. Ling   《Applied Thermal Engineering》2004,24(17-18):2737-2745
A new separate heat pipe refrigerator and heat pump is suggested based on the general three temperature thermal jet refrigerator and heat pump cycle. Sub-cooled hot water or other appropriate liquid heated by low grade heat sources forms the hot end and another heat pipe containing evaporator and condenser ends, adiabatic section of two-phase ejector and throttling tube is as the cold end of the separate heat pipe system. Performance relations for the thermal jet refrigerator and heat pump of such system is analyzed and a method of thermodynamic performance analysis is recommended. Primary prediction shows the feasibility of such heat pipe system for cold and warm water supply.  相似文献   

6.
Effects of micro heat pipe (MHP) cross-sections and orientations on its thermal performance are experimentally investigated in this study. Tests are conducted using five different cross-sections (circular, semicircular, elliptical, semi-elliptical and rectangular) of micro heat pipes having same hydraulic diameter of 3 rnm placed at three different inclination angles (0°, 45°, 90°), where water is used as the working fluid. Evaporator section of the MHP is heated by an electric heater and the condenser section is cooled by circulation of water in an annular space between condenser section and the water jacket. Temperatures at different locations of the MHP are measured using five calibrated K type thermocouples. Heat supply is varied using a voltage regulator which is measured by a precision ammeter and a voltmeter. It is found that thermal performance tends to deteriorate as the MHP is flattened. Thus among all cross-sections of MHP, circular one exhibits the best thermal performance in terms of heat flux dissipation followed by semi-elliptical, semi-circular, elliptical and rectangular cross-sections. Moreover, its heat transfer capability also decreases with decreasing of its inclination angle. Finally, a correlation is developed which covers all the experimental data within +7%.  相似文献   

7.
The effect of gravity on the thermal performance of inclined micro heat pipes with axial conduction in the solid wall is reported. A one-dimensional, steady-state model is developed from first principles in which the continuity, momentum, and energy equations of the liquid and vapour phases, together with the Young–Laplace equation, are solved numerically to yield the heat and fluid flow characteristics of an inclined micro heat pipe which is operated optimally at a certain operating temperature. The analysis covers both the favourable and adverse effects of gravity on the performance of a micro heat pipe. The effects of gravity, through the angle of inclination, on the heat transport capacity, the optimal charge level of the working fluid, the liquid volume fraction distribution, the circulation strength of working fluid and the solid wall temperature distribution are analysed, to provide a better insight for the design of inclined micro heat pipes.  相似文献   

8.
This study presents the effect of silver nanofluid on thermal performance of inclined screen mesh heat pipe in cooling applications. Four cylindrical copper heat pipes containing two layers of screen mesh were fabricated and tested with distilled water and water based silver nanofluids with mass concentrations of 0.25%, 0.5% and 0.75% as working fluids. The experiments were performed at four inclination angles of 0°, 30°, 6° and 90°. The main focus of this study is to investigate inclined heat pipe performance with nanofluid. Experimental results indicate that the thermal performance of heat pipes was improved with nanofluids compared to water and thermal resistance of the heat pipes decreased with the increase of nanoparticle concentration. Moreover, the thermal performance of the heat pipes at inclination angle of 60° is found to be higher than other tested inclination angles, which shows the effect of gravity on heat pipe performance.  相似文献   

9.
This article experimentally investigates the thermal performances of a heat pipe with phase change material for electronic cooling. The adiabatic section of heat pipe is covered by a storage container with phase change material (PCM), which can store and release thermal energy depending upon the heating powers of evaporator and fan speeds of condenser. Experimental investigations are conducted to obtain the system temperature distributions from the charge, discharge and simultaneous charge/discharge performance tests. The parameters in this study include three kinds of PCMs, different filling PCM volumes, fan speeds, and heating powers in the PCM cooling module. The cooling module with tricosane as PCM can save 46% of the fan power consumption compared with the traditional heat pipe.  相似文献   

10.
An experimental study was carried out for the heat transfer characteristics and the flow patterns of the evaporator section using small diameter coiled pipes in a looped heat pipe (LHP). Two coiled pipes: the glass pipe and the stainless steel pipes were used as evaporator section in the LHP, respectively. Flow and heat transfer characteristics in the coiled tubes of the evaporator section were investigated under the different filling ratios and heat fluxes. The experimental results show that the combined effect of the evaporation of the thin liquid film, the disturbance caused by pulsation and the secondary flow enhanced greatly the heat transfer and the critical heat flux of the evaporator section. In final, two dimensionless empirical correlations were proposed for predicting the heat transfer coefficients of the evaporator section before and after dryout occurs.  相似文献   

11.
The heat transfer performance of axial rotating heat pipes was measured under steady state at rotational speeds up to 4000 RPM, or a maximum centrifugal acceleration of 170g, and heat transfer rates up to 0.7 kW. A cylindrical and an internally tapered heat pipe with water as the working fluid were tested with different fluid loadings that ranged from 5% to 30% of the total interior volume. The measurements were used to characterize the effects of rotational speed, working fluid loading, and heat pipe geometry on the heat transfer performance. The internal taper on the condenser was found to significantly increase the heat transfer rate compared to the cylindrical case. A comparison between the test results and predictions from previous models showed that natural convection in the liquid film at the heat pipe evaporator plays an important role in the heat transfer mechanism at high rotational speeds.  相似文献   

12.
《Applied Thermal Engineering》2003,23(8):1019-1032
The heat transfer characteristics of a radially rotating heat pipe (RRHP) depend on a number of parameters. This paper is a study of the effects of these parameters. They are the inner diameter of the tube, aspect ratio, rotational acceleration, working fluid and the dimensionless parameters of heat transfer. RRHPs, made of copper tubes with inner diameters of 11, 26, and 50.4 mm, were used in the experiments. The aspect ratios were 5, 10, 20 and 40 respectively. The selected working fluids were water, ethanol and R123 (CHCl2CF3) with a filling ratio of 60% of evaporator volume. The experiments were conducted at inclination angles of 0–90° from horizontal axis and the rotational accelerations were lower, higher and equal to gravitational acceleration. The working temperature was 90 °C. The evaporator section was heated by electric power while heat in the condenser section was removed naturally by air. The evaporator and adiabatic section of the RRHP were well insulated with ceramic fibers. The experimental results showed that the heat flux decreases with an increasing inner diameter, and decreases with an increasing aspect ratio. The heat flux increases with an increasing rotational acceleration and decreases with an increasing liquid density of the working fluid. A correlation to predict the heat transfer rate at vertical position can be established.Further research will investigate a visual study of internal flow pattern and the formulation of a mathematical model.  相似文献   

13.
A rotating platform was used to create dynamic load, and the mixture air–water two‐phase flow and boiling steam–water two‐phase flow were obtained in an inclined test pipe. By changing the parameters, such as inclination of the test pipe, rotational speed, inlet temperature, flow rate, and so on, the experiments for two‐phase flow in the pipe at inclination of 0°, 45°, and 66° were conducted, respectively. The effects of acceleration and inclination on their flow and heat transfer characteristics were investigated. The two‐phase flow patterns in inclined pipes under rotation conditions were caught with a video camera. The images show that the impact mixed flow and churn flow were found in this research. The results show that the acceleration and pipe inclination significantly influence the flow characteristic and heat transfer of the two‐phase pipe flow. As the directions of the dynamic load and the gravity are opposite to the flow direction, the greater the dynamic load and inclination, the higher the pressure drop and the heat emission, and the lower the flow rate, the void fraction, and the fluid temperature. Therefore, the dynamic load and gravity will improve the flow resistance, enhance heat emission and reduce the heat gained by the fluid.  相似文献   

14.
Qing Guo  Xiao Ke Yan  Fang Ye  Chong Fang Ma 《传热工程》2013,34(17-18):1627-1635
ABSTRACT

Alkali metal heat pipes play significant role in various high-temperature engineering applications because of their excellent heat transfer capacity. Inclination angle is one of major factors which significantly affect start-up and heat transfer characteristics especially for thermosiphons. A sodium-potassium alloy (Na-K) gravity-driven heat pipe (GHP), in which the content of potassium in Na-K is wt. 55%, was fabricated to study the effect of inclination angle on start-up and heat transfer capacities of high-temperature GHPs. The Na-K GHPs was fixed by the adjusting bracket in 9 inclination angles (0°, 10°, 20°, 30°, 40°, 50°, 60°, 70° and 80°). Outside wall temperature was measured by eleven thermocouples which calibrated by the China Institute of Metrology prior to using them in the experiments. Results show that inclination angle has a significant impact on start-up and heat transfer performances of the Na-K GHP because of the impact of gravity on the two-phase flow inside the heat pipe and effective heating area in the evaporator. Start-up and heat transfer characteristics are dramatically improved and temperature difference significantly decreases as the inclination angle increases from 0° to 50°, but slightly decreases when the inclination angle exceeds 60°.  相似文献   

15.
Performance was evaluated for a passive solar space heating system utilizing heat pipes to transfer heat through an insulated wall from an absorber outside the building to a storage tank inside the building. The one-directional, thermal diode heat transfer effect of heat pipes make them ideal for passive solar applications. Gains by the heat pipe are not lost during cloud cover or periods of low irradiation. Simplified thermal resistance-based computer models were constructed to simulate the performance of direct gain, indirect gain, and integrated heat pipe passive solar systems in four different climates. The heat pipe system provided significantly higher solar fractions than the other passive options in all climates, but was particularly advantageous in cold and cloudy climates. Parametric sensitivity was evaluated for material and design features related to the collector cover, absorber plate, heat pipe, and water storage tank to determine a combination providing good thermal performance with diminishing returns for incremental parametric improvements. Important parameters included a high transmittance glazing, a high performance absorber surface and large thermal storage capacity.An experimental model of the heat pipe passive solar wall was also tested in a laboratory setting. Experimental variations included fluid fill levels, addition of insulation on the adiabatic section of the heat pipe, and fins on the outside of the condenser section. Filling the heat pipe to 120% of the volume of the evaporator section and insulating the adiabatic section achieved a system efficiency of 85%. Addition of fins on the condenser of the heat pipe did not significantly enhance overall performance.The computer model was validated by simulating the laboratory experiments and comparing experimental and simulated data. Temperatures across the system were matched by adjusting the model conductances, which resulted in good agreement with the experiment.  相似文献   

16.
The mathematical model of a closed-end pulsating heat pipe (CEPHP) with a bottom heat mode at different inclination angles was constructed. The closed-end pulsating heat pipe was modeled with specified assumptions that were observed visually (i.e., the scaling factor for geometrical size and the frequency of bubble generation inside the liquid slugs). The solution for all of the basic governing equations of liquid film, liquid slugs, and vapor plugs, in which the effects of surface tension, viscous friction of the working fluid, and perfect gas were included, has been numerically obtained by solving a series of ordinary differential equations by means of the explicit method. However, the solution for the momentum equation of liquid slugs was numerically obtained by solving a series of partial differential equations by using the implicit method. Results from the model clearly simulated the dynamics of the internal working fluid in the CEPHP. Moreover, the results were compared with existing experimental data, and good agreement was found with an error range of ± 13%. It was also noted that the maximum heat transfer rate of the CEPHP with bottom heat mode occurred at the highest evaporator temperature (150°C for this study) and inclination angles of 70–80 degrees from horizontal axis. The boiling frequencies in this range of inclination angles were observed by visual experiment and seen to be at their highest values. This has been justified by the higher amount of liquid in the evaporator section as well as the change in flow pattern to a stratified flow (inclination tube).  相似文献   

17.
Metal hydrides can store hydrogen at high volumetric efficiencies. As the process of charging hydrogen into a metal powder to form its hydride is exothermic, the heat released must be removed quickly to maintain a rapid charging rate. An effective heat removal method is to incorporate a heat exchanger such as a heat pipe within the metal hydride bed. In this paper, we describe a two-dimensional numerical study to predict the transient heat and mass transfer in a cylindrical metal hydride tank embedded with one or more heat pipes. Results from a parametric study of hydrogen storage efficiency are presented as a function of storage tank size, water jacket temperature and its convective heat transfer coefficient, and heat pipe radius and its convective heat transfer coefficient. The effect of enhancing the thermal conductivity of the metal hydride by adding aluminum foam is also investigated. The study reveals that the cooling water jacket temperature and the heat pipe's heat transfer coefficient are most influential in determining the heat removal rate. The addition of aluminum foam reduces the filling time as expected. For larger tanks, more than one heat pipe is necessary for rapid charging. It was found that using more heat pipes of smaller radii is better than using fewer heat pipes with larger radii. The optimal distribution of multiple heat pipes was also determined and it is shown that their relative position within the tank scales with the tank size.  相似文献   

18.
Sorption heat pipe (SHP) combines the enhanced heat and mass transfer in conventional heat pipes with sorption phenomena in the sorbent bed. SHP consists of a sorbent system (adsorber/desorber and evaporator) at one end and a condenser + evaporator at the other end. It can be used as a cooler/heater and be cooled and heated as a heat pipe. SHP is suggested for space and ground application, because it is insensitive to some “g” acceleration. This device can be composed of a loop heat pipe (LHP), or capillary pumped loop (CPL) and a solid sorption cooler. The most essential feature is that LHP and SHP have the same evaporator, but are working alternatively out of phase. SHP can be applied as a cryogenic cooler, or as a fluid storage canister. When it is used for cryogenic thermal control of a spacecraft on the orbit (cold plate for infrared observation of the earth, or space), or efficient electronic components cooling device (lased diode), it is considered as a cooler. When it is applied as a cryogenic storage system, it insures the low pressure of cryogenic fluid inside the sorbent material at room temperature.  相似文献   

19.
An experimental investigation is reported for medium-temperature, wickless, small-diameter heat pipes charged with environmentally sound and commercially available working fluids. The wickless heat pipes (thermosyphons) studied have many applications in heat recovery systems since their operational temperature range is between 200°C and 450°C. The heat pipes investigated had an internal diameter of 6 mm and a length of 209 mm. The lengths of evaporator and condenser sections were 50 mm and 100 mm, respectively. The working fluids tested were diphenyl based: Therminol VP1 and Dowtherm A. High-grade stainless steel was chosen as the shell material for the heat pipes to provide chemical compatibility between heat pipe casing material and working fluids at elevated temperatures. Thermal resistances of less than 0.4 K/W have been achieved at working temperatures of up to 420°C with an effective thermal conductivity of 20 kW/m-K, which corresponds to an axial heat flux of 2.5 MW/m2. Even for such small-diameter heat pipes, the experimental data for the evaporator showed good agreement with Rohsenow's pool boiling correlation.  相似文献   

20.
In the present study, the effect of nanofluids on the thermal performance of heat pipes is experimentally investigated by testing circular screen mesh wick heat pipes using water-based Al2O3 nanofluids with the volume fraction of 1.0 and 3.0 Vol.%. The wall temperature distributions and the thermal resistances between the evaporator and the adiabatic sections are measured and compared with those for the heat pipe using DI water. The averaged evaporator wall temperatures of the heat pipes using the water-based Al2O3 nanofluids are much lower than those of the heat pipe using DI water. The thermal resistance of the heat pipe using the water-based Al2O3 nanofluids with the volume fraction of 3.0 Vol.% is significantly reduced by about 40% at the evaporator-adiabatic section. Also, the experimentally results implicitly show that the water-based Al2O3 nanofluids as the working fluid instead of DI water can enhance the maximum heat transport rate of the heat pipe. Based on the two clear evidences, we conclude that the major reason which can not only improve the maximum heat transport rate but also significantly reduce the thermal resistance of the heat pipe using nanofluids is not the enhancement of the effective thermal conductivity which most of previous researchers presented. Especially, we experimentally first observe the thin porous coating layer formed by nanoparticles suspended in nanofluids at wick structures. Based on the observation, it is first shown that the primary mechanism on the enhancement of the thermal performance for the heat pipe is the coating layer formed by nanoparticles at the evaporator section because the layer can not only extend the evaporation surface with high heat transfer performance but also improve the surface wettability and capillary wicking performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号