首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
Forced convection cooling is an effective method in thermal management that relies mainly on dissipating heat by pumping heat transfer fluid (HTF) through the heat source. In this paper, we investigate the thermal properties enhancement of dielectric water as the HTF. To enhance the properties of the HTF, microencapsulated phase change materials (MPCM) will be added to the base fluid. The MPCMs are composed of phase change material (PCM) encapsulated with shell materials. The PCM inside the capsules may undergo a phase change. This leads to a significant heat gain and release. The numerical model is developed to solve for continuity, momentum, and heat transfer equations using the finite volume method. The behavior of the MPCM slurry in curved channels, generates unique patterns due to different viscosity values and the centrifugal forces. Our preliminary numerical data on MPCM slurry through planar spiral coil heat exchangers show the new patterns of velocity and heat transfer curves. The current paper studies the steady condition of laminar flow at different boundary conditions. The velocity and temperature profiles, heat transfer data with different mass fractions of MPCM additives to the base fluid, and their heat removal capabilities are quantified and discussed in detail.  相似文献   

2.
A computational fluid dynamics (CFD) model was developed for the simulation of a phase change thermal energy storage process in a 100 l cylindrical tank, horizontally placed. The model is validated with experimental data obtained for the same configuration. The cold storage unit was charged using water as the heat transfer medium, flowing inside a horizontal tube bundle, and the selected phase change material (PCM) was microencapsulated slurry in 45% w/w concentration. The mathematical model is based on the three-dimensional transient Navier–Stokes equations with nonlinear temperature dependent thermo-physical properties of the PCM during the phase change range. These properties were experimentally determined using analytical methods. The governing equations were solved using the ANSYS/FLUENT commercial software package. The mathematical model is validated with experimental data for three different flow rates of the heat transfer fluid during the charging process. Bulk temperature, heat transfer rate and amount of energy stored were used as performance indicators. It was found that the PCM bulk temperatures were predicted within 5% of the experimental data. The results have also shown that the total accumulated energy was within 10% of the observed value, and thus it can be concluded that the model predicts the heat transfer inside the storage system with good accuracy.  相似文献   

3.
管内流体流动管外PCM发生相变的贮能系统热性能研究   总被引:1,自引:1,他引:1  
施伟  葛新石 《太阳能学报》2004,25(4):497-502
建立了分析空调贮能系统中管内流体流动管外PCM发生相变的相变的贮能器热性能的数学模型,并进行了数值计算。其中,把传热流体看作是沿轴向的—维无粘流动,对PCM相变过程的求解用显热容法。计算结果与文献中的计算结果吻合较好。所得结论对该类贮能系统的设计和性能优化有一定指导作用。  相似文献   

4.
Fei Ma 《传热工程》2013,34(17-18):1487-1497
ABSTRACT

The conventional solar collectors which absorb solar energy through surface of the receiver have much energy waste during energy conversion process due to heat loss from the pipe surface. Volumetric absorption solar collectors (VASC) can overcome this problem through directly absorbing solar energy by nanofliud with excellent optical absorption property. Nano-encapsulated phase change material (NPCM) is a kind of novel composite PCMs widely adopted in thermal energy storage system. The NPCM slurry (NPCS) has great potential to be used in VASC since it can be used as both the heat transfer fluid and energy storage medium. In the present study, a numerical model based on the Eulerian-Eulerian approach is built to investigate the heat transfer characteristics of NPCS in a parallel plate channel for volumetric absorption of solar energy. Influences of different parameters such as the extinction coefficient, flow velocity, radiative intensity on the performance of collector are studied through the numerical simulation. The results indicate that the NPCS shows better performance in the VASC compared with the conventional nanofluids without phase change. The information provided is helpful in the further study of solar energy volumetric absorption.  相似文献   

5.
A numerical and experimental investigation of phase change process dominated by heat conduction in a thermal storage unit is presented in this paper. The thermal energy storage involves a shell and tube arrangement where paraffin wax as phase change material (PCM) is filled in the shell. Water as heat transfer fluid (HTF) is passed inside the tube for both charging and discharging cycles. According to the conservation of energy, a simple numerical method called alternative iteration between thermal resistance and temperature has been developed for the analysis of heat transfer between the PCM and HTF during charging and discharging cycles. Experimental arrangement has been designed and built to examine the physical validity of the numerical results. Comparison between the numerical predictions and the experimental data shows a good agreement. A detailed parametric study is also carried out for various flow parameters and system dimensions such as different mass flow rates, inlet temperatures of HTF, tube thicknesses and radii. Numerical study reveals that the contribution of the inlet temperature of HTF has much influence than mass flow rate in terms of storage operating time and HTF outlet temperature. Tube radius is a more important parameter than thickness for better heat transfer between HTF and PCM.  相似文献   

6.
Long Jian-you 《Solar Energy》2008,82(11):977-985
This paper addresses a numerical and experimental investigation of a thermal energy storage unit involving phase change process dominated by heat conduction. The thermal energy storage unit involves a triplex concentric tube with phase change material (PCM) filling in the middle channel, with hot heat transfer fluid (HHTF) flowing outer channel during charging process and cold heat transfer fluid (CHTF) flowing inner channel during discharging process. A simple numerical method according to conversation of energy, called temperature & thermal resistance iteration method has been developed for the analysis of PCM solidification and melting in the triplex concentric tube. To test the physical validity of the numerical results, an experimental apparatus has been designed and built by which the effect of the inlet temperature and the flow rate of heat transfer fluid (HTF, including HHTF and CHTF) on the thermal energy storage has been studied. Comparison between the numerical predictions and the experimental data shows good agreement. Graphical results including fluid temperature and interface of solid and liquid phase of PCM versus time and axial position, time-wise variation of energy stored/released by the system were presented and discussed.  相似文献   

7.
Nanoencapsulated phase change material slurries (NPCMS) combine properties of carried fluid and phase change material (PCM). Usage of NPCMS instead of water as a working fluid has a lot of advantages in many industrial fields. The costly and time‐consuming determination of thermophysical properties of NPCMS through the experimental analysis led the current investigations to use soft computing methods like correlating, artificial neural network (ANN), and ant colony optimization (ACOR). In this study, the application of ANN, empirical correlations, and ACOR for modeling the thermophysical properties of NPCM slurry, which has been synthesized through a facile and eco‐friendly procedure, has been investigated. PCM nanocapsules have been synthesized using a miniemulsion polymerization method. Nancapsules consist of AP‐25 as core and a Styrene shell, which is modified with graphene oxide nanosheets as an extra protective screen. The morphology and thermal properties of nanocapsules were characterized and analyzed, respectively. Results revealed that minimum average particle‐size values result in a melting latent heat of 146.8 J/g. In case of NPCM slurry, the results showed that the thermal conductivity of MPCS decreased with particle concentration for the temperatures below the melting point. The NPCMS can be considered a Newtonian fluid within the test region (shear rate > 200/seconds and mass fraction < 0.25). The ANN‐ACOR model consists of two neurons in the input layer, six neurons in the hidden layer, and two neurons in the output layer. The input layer consists of two nodes (PCM concentration and temperature) that correspond to parameters found essential and sufficient for thermophysical properties prediction. Upon comparison, the results show that the presented model, which is a combination of the ACOR algorithm and an artificial neural network, is compatible with experimental work.  相似文献   

8.
Due to the complexity of the fluid flow and heat transfer in packed bed latent thermal energy storage (LTES) systems, many hypotheses were introduced into the previous packed bed models, which consequently influenced the accuracy and authenticity of the numerical calculation. An effective packed bed model was therefore developed, which could investigate the flow field as the fluid flows through the voids of the phase change material (PCM), and at the same time could account for the thermal gradients inside the PCM spheres. The proposed packed bed model was validated experimentally and found to accurately describe the thermo-fluidic phenomena during heat storage and retrieval. The proposed model was then used to do a parametric study on the influence of the arrangement of the PCM spheres and encapsulation of PCM on the heat transfer performance of LTES bed, which was difficult to perform with the previous packed bed models. The results indicated that random packing is more favorable for heat storage and retrieval as compared to special packing; both the material and the thickness of the encapsulation have the apparent effects on the heat transfer performance of the LTES bed.  相似文献   

9.
A theoretical model was developed to predict the transient behavior of a shell-and-tube storage unit with the phase change material (PCM) on the shell side and the heat transfer fluid (HTF) circulating inside the tubes. The multidimensional phase change problem is tackled with an enthalpy-based method coupled to the convective heat transfer from the HTF. The numerical predictions are validated with experimental data. A series of numerical experiments are then undertaken to assess the effects of various thermal and geometric parameters on the heat transfer process and on the behavior of the system. Results show that the shell radius, the mass flow rate, and the inlet temperature of the HTF must be chosen carefully in order to optimize the performance of the unit.  相似文献   

10.
This paper presents a detailed review of effect of phase change material (PCM) encapsulation on the performance of a thermal energy storage system (TESS). The key encapsulation parameters, namely, encapsulation size, shell thickness, shell material and encapsulation geometry have been investigated thoroughly. It was observed that the core-to-coating ratio plays an important role in deciding the thermal and structural stability of the encapsulated PCM. An increased core-to-coating ratio results in a weak encapsulation, whereas, the amount of PCM and hence the heat storage capacity decreases with a decreased core-to-coating ratio. Thermal conductivity of shell material found to have a significant influence on the heat exchange between the PCM and heat transfer fluid (HTF). This paper also reviews the solidification and melting characteristics of the PCM and the effect of various encapsulation parameters on the phase change behavior. It was observed that a higher thermal conductivity of shell material, a lower shell size and high temperature of HTF results in rapid melting of the encapsulated PCM. Conduction and natural convection found to be dominant during solidification and melt processes, respectively. A significant enhancement in heat transfer was observed with microencapsulated phase change slurry (MPCS) due to direct surface contact between the encapsulated PCM and the HTF. It was reported that the pressure drop and viscosity increases substantially with increase in volumetric concentration of the microcapsules.  相似文献   

11.
为探究相变温度对相变材料回填地埋管换热器传热性能的影响,建立管内流体换热、回填区域相变换热及土壤换热的三维耦合传热数值模型,利用焓-多孔介质模型对相变区域相变问题进行处理,研究夏季间歇运行工况下不同相变温度回填材料对埋管换热器传热性能的影响。结果表明:添加PCM,可有效提高换热量,短期内缓解埋管周围热积聚,利用相变温度18℃的PCM回填,单位井深换热量至少比普通材料回填提高49.54%;在间歇运行初期,换热量随相变温度的升高逐渐减小,低相变温度的PCM可明显改善埋管换热量,但随着时间的进行,较高相变温度PCM回填对换热器换热量的改善效果优于前期低相变温度。此外,在运行期间,不同相变温度的PCM表现出不同的熔化、凝固特性,当PCM的熔化、凝固过程交替进行时,可减缓土壤温度在运行期间内波动幅度。  相似文献   

12.
This article presents a numerical investigation on melting of phase change material (PCM) enhanced by nanoparticles inside a cylindrical tube using the lattice Boltzmann method. Water (ice) and copper particles are chosen as the base fluid (PCM) and nanoparticles, respectively. Results show that the melting rate is the same for all regions of the cylinder for a low Rayleigh number, while it intensifies at the top half of the cylinder for a moderate Rayleigh number. Also, existence of strong unstable flow in the bottom portion of the cylinder at a Rayleigh number of 106 causes the melting rate to keen after a definite time. Nanoparticles have no significant effect on the melting rate at the beginning of melting, where the conduction mode of heat transfer dominates between the hot wall and solid PCM, while full melting of PCM occurs earlier by the increase of solid concentration.  相似文献   

13.
Aqueous phase change material (PCM) particles are dispersed in an organic phase to constitute a slurry for using as a cold heat transfer medium for district cooling in refrigeration and air conditioning industry. The PCM contains 90% of water stabilized by a three‐dimensional network of polymer. The flow behaviour of the slurry is investigated in a small‐scale loop circuit with transparent pipes to allow observation of flow patterns. Data show that pressure drop increases with velocity and decreases with temperature, which can be explained by heterogeneities in flow for temperature higher than 0°C and for Reynolds number (based on the properties of the liquid phase) lower than 7000. A homogeneous particle field is observed for Reynolds number up to 7000, which guarantees a safe operation of the system without the occurrence of clogging in ducts. For this range of flow, the flow rate and the pump consumption for the PCM slurry decrease notably for the same heat transportation quantity compared with chilled water. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A new microencapsulated phase change material slurry based on microencapsulated Rubitherm RT6 at high concentration (45% w/w) was tested. Some heat storage properties and heat transfer characteristics have been experimentally investigated in order to assess its suitability for the integration into a low temperature heat storage system for solar air conditioning applications. DSC tests were conducted to evaluate the cold storage capacity and phase change temperature range. A phase change interval of approximately 3 °C and a hysteresis behaviour of the enthalpy were identified. An experimental set-up was built in order to quantify the natural convection heat transfer occurring from a vertical helically coiled tube immersed in the phase change material slurry. First, tests were carried out using water in order to obtain natural convection heat transfer correlations. Then a comparison was conducted with the results obtained for the phase change material slurry. It was found that the values of the heat transfer coefficient for the phase change material slurry were higher than for water, under identical temperature conditions inside the phase change interval.  相似文献   

15.
Ming Liu  Frank Bruno  Wasim Saman 《Solar Energy》2011,85(11):3017-3027
This paper presents the results of a thermal performance analysis of a phase change thermal storage unit. The unit consists of several parallel flat slabs of phase change material (PCM) with a liquid heat transfer fluid (HTF) flowing along the passages between the slabs. A validated numerical model developed previously to solve the phase change problem in flat slabs was used. An insight is gained into the melting process by examining the temperatures of the HTF nodes, wall nodes and PCM nodes and the heat transfer rates at four phases during melting. The duration of the melting process is defined based on the level of melting completion. The effects of several parameters on the HTF outlet temperature, heat transfer rate and melting time are evaluated through a parametric study to evaluate the effects of the HTF mass flow rate, HTF inlet temperature, gap between slabs, slab dimensions, PCM initial temperature and thermal conductivity of the container on the thermal performance. The results are used to design a phase change thermal storage unit for a refrigerated truck.  相似文献   

16.
This paper is aimed at analyzing the behavior of a packed bed latent heat thermal energy storage system. The packed bed is composed of spherical capsules filled with paraffin wax as PCM usable with a solar water heating system. The model developed in this study uses the fundamental equations similar to those of Schumann, except that the phase change phenomena of PCM inside the capsules are analyzed by using enthalpy method. The equations are numerically solved, and the results obtained are used for the thermal performance analysis of both charging and discharging processes. The effects of the inlet heat transfer fluid temperature (Stefan number), mass flow rate and phase change temperature range on the thermal performance of the capsules of various radii have been investigated. The results indicate that for the proper modeling of performance of the system the phase change temperature range of the PCM must be accurately known, and should be taken into account.  相似文献   

17.
A new microencapsulated PCM (Phase Change Material) slurry (MEPCS) at high concentration (45% w/w) was developed based on microencapsulated Rubitherm RT6. Its heat storage and heat transfer characteristics have been experimentally investigated in order to assess its suitability for integration into a low temperature heat storage system for solar air conditioning applications. Differential scanning calorimetry tests have been conducted to evaluate the cold storage capacity and phase change temperature range. An experimental setup was built in order to quantify the natural convection heat transfer occurring from a vertical helically coiled tube immersed in the MEPCS. First, tests were carried out using water in order to obtain natural convection heat transfer correlations and then a comparison was made with the results obtained for the MEPCS. It was found that inside the phase change interval the values of the heat transfer coefficient for the MEPCS were significantly higher than for water, under identical temperature conditions.  相似文献   

18.
Heat transfer during melting in enclosures is important in the design of heat exchangers using phase change materials (PCM) for latent heat thermal energy storage. In this paper, the finite element method is employed to simulate the convection-dominated melting of a PCM in a cylindrical-horizontal annulus heated isothermally from the inside wall. The effects of Rayleigh number on the melting rate as well as the evolution of the flow pattern are examined. Results of the numerical experiments reveal that an increases in Rayleigh number promotes heat transfer rate. Multiple cellular pattern is observed at high Rayleigh numbers (106).  相似文献   

19.
为分析相变蓄热装置在充热和放热过程中的热性能,设计并搭建一套相变蓄热供热装置中试实验系统,研究主要运行参数对相变蓄热装置热性能的影响;在此基础上,结合项目案例,对相变蓄热供热系统经济性进行分析。结果表明:相变材料(Phase Change Material, PCM)凝固过程中的传热主要受相变介质内部导热控制;而在其熔化过程中自然对流对传热起重要控制作用;蓄热装置充热速率快于放热速率。提高传热流体流量有助于增强PCM中的热传递,缩短充/放热时间,但蓄热装置内PCM温度分布均匀性有所降低;为降低系统能耗,提高储放热效率,优先选用小流量进行充/放热。该相变蓄热供热项目的动态投资回收期为3.55年,具有良好的经济性。研究结果可对相变蓄热供热系统的设计及应用推广提供参考依据。  相似文献   

20.
The heat transfer behavior of phase change material fluid (PCM) under laminar flow conditions in circular tubes and internally longitudinal finned tubes was studied. An effective specific heat technique was used to model the phase change process. Heat transfer results for a smooth circular tube with PCM fluid were obtained under hydrodynamically and thermally fully developed conditions. Results for the finned tube were obtained using the H2 and T boundary conditions. It was determined that the Nusselt number was strongly dependent on the Stefan number, fin thermal conductivity value, and height of the fins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号