首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Exploring efficient oxygen evolution reaction (OER) catalysts synthesized from low-cost and earth-abundant elements are crucial to the progression of water splitting. In this paper, NiFe layered double hydroxide (LDH) nanosheets were grown on Ni foam (NF) through a straightforward hydrothermal method. The Fe doping effects were systematically investigated by controlling Ni/Fe ratios and Fe valence states, and the in-depth influence mechanisms were discussed. The results indicate that, through controlling structure morphology and enhancing Ni2+ oxidation, NiFeIII(1:1)-LDH displays the best and outstanding OER performance, with a low over potential of 382 mV at 50 mA cm?2, a low Tafel slope of 31.1 mVdec?1 and only 20 mV increase after 10 h continuous test at 50 mA cm?2. To our knowledge, this is one of the best OER electrocatalysts in alkaline media to date. This work provides a facile and novel strategy for the fabrication of bimetallic LDH catalysts with desired structures and compositions.  相似文献   

2.
Developing efficient oxygen evolution reaction (OER) electrocatalysts with earth-abundant elements is very important for sustainable H2 generation via electrochemical water splitting. Here we design a crystalline-amorphous Ni–Fe–Al hybrid phosphides nanosheet arrays grown on NiFe foam for efficient OER application. Dynamic surface reorganization of phosphides at anodic/cathodic polarizations is probed by in situ Raman spectroscopy. The reconstructed amorphous Ni(Fe)OOH species are determined as the active phases that facilitate the OER process. This unique electrode shows highly catalytic activity toward water oxidation, achieving the current densities of 10 and 100 mA cm?2 at 181 and 214 mV in 1 M KOH, respectively. Meanwhile, it also exhibits excellent stability at a large current density of 100 mA cm?2 for over 60 h. This work reveals the dynamic structural transformation of pre-catalyst in realistic conditions and highlights the important role of oxyhydroxides as real reactive species in OER process with high activity.  相似文献   

3.
Water splitting is a promising reaction for storing sustainable but intermittent energies. The critical bottleneck for it is oxygen evolution reaction (OER) requiring insufficiently low overpotentials, η. Metal oxides are the group of high performance catalysts for water oxidation, so far. We report a facile synthesis of the mixed metal oxide composite (NiO/Mn-doped NiCo2O4) and an easy dip-coating method to create electrocatalysts on nickel foam as electrode substrates cause significant efficiency for OER. The mixed metal oxides catalyst was characterized by using electrochemical methods, high-resolution transmission electron microscopy (HR-TEM), field emission-scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), inductively coupled plasma (ICP) and fourier-transform infrared spectroscopy (FTIR). Electrocatalysts were shown a Tafel slope of 34 mV dec?1 with overpotential η = 482 mV (for 100 mA cm?2) and at least 20 h durable OER activity. The electrochemical data demonstrate the synergistic effect of the coupling between the three metal-centres of Ni, Co, and Mn to decline the overpotential value. The current of (OER) is related to the electrolyte pH, displaying a non-proton-concerted mechanism in an approach to identifying rate-determining steps for OER. This could be concluded by the direct neighbour lattice O?– coupling to form an O–O bond. The simple and rapid fabrication method and the promising stability and high performance of the herein developed electrodes render them quite promising for technological water splitting systems.  相似文献   

4.
Developing efficient and inexpensive electrocatalysts for the oxygen evolution reaction is essential for water splitting technologies. Herein, Fe(OH)3/MnCO3 electrocatalyst with a three-dimensional cubic structure was synthesized using a hydrothermal method with step-by-step electrodeposition onto Ni foam. The developed system exhibited excellent catalytic performance with a low overpotential (213 mV) at 10 mA/cm2 and a Tafel slope of only 31.8 mV/dec in alkaline solution. The remarkable performance was ascribed to the close combination of amorphous structure Fe(OH)3 and crystal structure MnCO3, which greatly promoted the OER performance for the synergistic effect between Fe(OH)3 and MnCO3. This work describes a feasible method for constructing multidimensional structures, which may contribute to an effective strategy for developing high-performance OER electrocatalysts.  相似文献   

5.
The slow oxygen evolution reaction (OER) kinetics influences hydrogen production efficiency from water splitting. To break through the bottleneck of water splitting, it is urgent to develop efficient and economic electrocatalysts. Although NiFe-based catalysts exhibit outstanding OER activity, the complicated preparation process limits their large-scale synthesis and applications. Here, partially crystallized nickel-iron oxyhydroxides are synthesized by a facile sol-gel method. When the Fe/Ni mole ratio is 0.5:1, the NiFe0.5(OH)x catalyst shows superior OER performance with a low OER overpotential of 265 mV and good durability. Kinetic studies show that the energy barrier of NiFe0.5(OH)x is only 31.5 kJ mol?1, much smaller than those of Ni(OH)x (41.0 kJ mol?1) and Fe(OH)x (44.8 kJ mol?1). The synergistic action between Ni and Fe sites not only facilitates mass and charge transfer, but also promotes the formation of 1OOH intermediate for the OER.  相似文献   

6.
Developing only Fe derived bifunctional overall water splitting electrocatalyst both for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) while performing at low onset overpotential and with high catalytic stability is a rare instance. We present here the first demonstration of unique iron-oxide nanobeads (FeOx-NBs) based electrocatalyst executing both OER and HER with high activity. Thin-film electrocatalytic FeOx-NBs assembly is surface grown via simple spray coating (SC). The unique SC/FeOx-NBs propels OER initiating water oxidation just at 1.49 VRHE (η = 260 mV) that is the lowest observable onset potential for OER on simple Fe-oxide based catalytic films reported so far. Catalyst also reveals decently high HER activity and competent overall water splitting performance in the FeOx-NBs two-electrode system as well. Catalyst also presents stable kinetics, with promising high electrochemically active surface area (ECSA) of 1765 cm2, notable Tafel slopes of just 54 mV dec1? (OER) and 85 mV dec1? (HER), high exchange current density of 1.10 mA cm2? (OER), 0.58 mA cm2? (HER) and TOF of 74.29s1?@1.58VRHE, 262s1?@1.62VRHE (OER) and 82.5s1?@-0.45VRHE, 681s1?@-0.56VRHE (HER).  相似文献   

7.
Oxygen evolution reaction (OER) is an essential process in energy conversion and storage, especially in water electrolysis, while developing active and low-cost catalysts is the key to maximizing O2 production. Here a facile three-electrode electrolysis system is firstly applied to synthesize nickel hydroxide-iron hydroxide/graphene hybrid. To fully utilize the electrical energy and simplify the catalyst synthesis, we made graphite exfoliated into graphene at the cathode and nickel-iron hydroxide synthesized at the anode simultaneously. The best electrocatalytic performance of Ni–Fe/G for OER shows an overpotential of 280 mV (without iR compensation) at 10 mA cm?2, superior to commercial RuO2 (341 mV). Results show that the introduction of Fe in Ni–Fe/G not only converts part of α-Ni(OH)2 into more active β-Ni(OH)2, but promotes the electric conductivity and electrochemically active surface area (ECSA) of the obtained Ni–Fe/G, therefore Ni–Fe/G shows the superior OER performance. The OER activity of Ni–Fe/G can be further adjusted by experiment conditions including electrolysis time and electrolyte concentration. This work provides a novel and facile method for highly efficient OER via engineering the non-noble metal hydroxide/graphene hybrid.  相似文献   

8.
The oxygen evolution reaction (OER) at anode requires high overpotential and is still challenging. The metallic core-oxyhydroxide layer structure is an efficient method to lower an overpotential. We synthesized Fe rich FeCo core-Co rich FeCo oxyhydroxide layer with a different particle size of 173 nm, 225 nm, and 387 nm (FeCo 173, 225, 387) through a difference in the reduction rate of Fe/Co precursors using facile modified polyol synthesis. To investigate the effect of conductivity, CoFe2O4 nanoparticles of 80–130 nm were synthesized. Among samples, FeCo 173 showed remarkable catalytic performance of 316 mV at a current density of 10 mA/cm2 in 0.1 M KOH compared to RuO2 (408 mV), FeCo 225 (323 mV), FeCo 387 (334 mV), CoFe2O4 (382 mV). Moreover, FeCo 173 showed good stability for 60,000 s while RuO2 showed a gradual increase in overpotential to maintain 10 mA/cm2 after 15,000 s in chronopotentiometry. The excellent performance was attributed to Fe-rich metallic core, a small amount of Fe doping into CoOOH, and the synergic effect between the active site of Co rich FeCoOOH and conductive Fe rich metallic core. Following this result, it shows that the use of such FeCo electrodes has advantages in the production of hydrogen via electrochemical water oxidation.  相似文献   

9.
It is very crucial to design and prepare environmentally friendly, efficient and sustainable oxygen evolution reaction (OER) catalysts for water splitting reaction. In this work, a series of Fe–Co–B nanosheets with different molar ratio of Fe/Co precursor have been recombined with bacterial cellulose based carbon nanofiber (BCCNF) through simple electroless deposition method at room temperature. It is indicated that, when the Fe/Co molar ratio is 1:3, Fe–Co–B/BCCNF exhibits an excellent catalytic property with overpotential of only 160 mV at 10 mA cm?2. Furthermore, it displays a prominent electrochemical stability, even over 30 h of OER process under alkaline condition. The strategy of designing 3D nanostructure and constructing metal-boride-based catalyst for OER provides valuable insights into efficient oxygen evolution.  相似文献   

10.
Increasing worldwide energy consumption has prompted considerable study into energy generation and energy storage systems in recent years. Chemical fuels may be produced efficiently via electrocatalytic water splitting, which uses electric and solar power. The development of efficient anodic electrocatalysts for efficient oxygen evolution reaction (OER) is a greater concern of present energy research. Cerium oxide (CeO2) are promising electrocatalysts that exhibit outstanding OER but their reduced stability obstructs the practical application. A novel strategy was established to construct an effective catalyst of heteroatom (N, B, P and S) doped CeO2 matrix were prepared. Moreover, the doping of heteroatoms into the CeO2 matrix processes the improved electronic conductivity, reactive sites, increases the electrochemical catalytic activity, which enhances the water oxidation reaction. Consequently, well-suited alkaline electrolysers were brought together for water oxidation to ideal OER electrocatalytic activity. The OER activity of the electrocatalysts follows the order of S–CeO2 (190 mV@10 mA cm−2), N– CeO2 (220 mV @10 mA cm−2), P– CeO2 (230 mV @10 mA cm−2), B–CeO2 (250 mV @10 mA cm−2) and CeO2 (260 mV @10 mA cm−2) in 1 M of KOH. From the kinetics analysis, Tafel slope value achieved for catalysts CeO2, B–CeO2, P–CeO2, N–CeO2 and S–CeO2 are 142 mV dec−1,121 mV dec−1, 102 mV dec−1, 98 mV dec−1 and 83 mV dec−1 respectively. These results validate that the S–CeO2 electrode is prominent for OER performance with the requirement of cell voltage of 1.42 V at 10 mA cm−2 current density. In addition, sulphur doped CeO2 relatively have excellent stability through chrono-potentiometric analysis lasting for 20 h. Although the heteroatoms doped CeO2 is acts as anode material, the preparation method is widespread, which will reduce the synthesis cost and streamline the preparation of electrode for OER. This research effort delivers a complete advantage for the development of robust, environmentally friendly and highly dynamic electrocatalysts for OER activity.  相似文献   

11.
Highly active and durable electrocatalysts for oxygen evolution reaction (OER) play a vital role in water splitting. Despite numerous efforts, the strategies to prepare durable and effective electrocatalysts via scalable methods still remain a great challenge. In this work, we fabricated Fe-doped Ni(OH)2 ultrathin nanosheets (Fe–Ni–OH/Ni) via autologous growing of Ni(OH)2 from Ni foam, and in situ electrochemical-assisted doping Fe into Ni(OH)2. Benefiting from the unique structure with large surface areas and strong coupling effects between Fe and Ni, the optimal Fe–Ni–OH electrodes exhibit remarkable catalytic performance toward OER, which requires an overpotential of 220 mV to achieve a current density of 10 mA cm−2 with a Tafel slope of 48.3 mV dec−1. The Fe–Ni–OH electrodes also possess high stability even under a high current density of 500 mA cm−2 for 600 h with an ultralow overpotential of 290 mV. Using Ni–Fe–OH electrodes as both anode and cathode for overall water splitting, only a small overpotential of 1.57 V is required to reach a current density of 10 mA cm−2. Moreover, the high catalytic performance and scalable preparation method can meet the emergency needs for the practical application.  相似文献   

12.
In order to reduce the cost of electrocatalysts and increase the exposure of the Ir active sites while ensuring the stability of the catalyst, a N-doped carbon nanotube (NCNT) is applied as a conductive support to confine the Ir clusters for avoiding them growing up via a modified method based on pyrolysis of a mixture of melamine, ferric chloride and iridium trichloride. It is found that Ir species in the as-obtained Ir(20)/Fe@NCNT-900 composite exist in two forms, Ir nanoclusters (1–2 nm) dotted on the wall of NCNT and the Ir atomically scattered on the Fe nanoparticles wrapped in the NCNT. Although the Ir content of Ir(20)/Fe@NCNT-900 is extremely low (~4 wt% Ir), the composite catalyst delivers excellent activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) with an exceptionally low overpotential of 4.7 mV/11 mV for HER and 300 mV/270 mV for OER to drive 10 mA cm?2 in 0.5 M H2SO4/1.0 M KOH electrolyte respectively, which exceeds the commercial Pt/C (20 wt% Pt) and IrO2 benchmarks. In addition, it has much higher mass activity for OER at 1.55 V (1.78 A mg?1Ir) than those of the referenced catalysts in acid. The cell voltage of the two-electrode system assembled by Ir(20)/Fe@NCNT-900 for total water splitting in acidic and alkaline media are only 1.520 V and 1.510 V to afford 10 mA cm?2 separately, lower than that of Pt/C||IrO2 and with a good stability. Our work provides a construction method of low-content precious metal composite catalysts which can be applied in OER and overall water splitting field.  相似文献   

13.
Searching for highly active and durable oxygen evolution reaction (OER) electrocatalysts is the key to break through the bottleneck of overall water splitting. Here, we prepare NixFe-BDC (H2BDC = terephthalic acid) nanorods with different Ni/Fe ratios by a facile solvothermal method for the OER. The optimal Ni3Fe-BDC exhibits a low overpotential (η10) of 265 mV and a Tafel slope of 90 mV·dec−1 in 1 M KOH. Moreover, it shows a low η10 of 280 mV and excellent stability in the mixture of 1 M NaCl and 1 M KOH, which has strong corrosion resistance to Cl anions. The role of Fe3+ not only increases the charge transfer rate of Ni3Fe-BDC, but also affects the specific surface area of the catalyst with high electrochemical activity. Kinetic studies show that both Fe and Ni sites act as active centers, which catalyze synergistically to reduce the reaction kinetic energy barrier. Characterization results of the used Ni3Fe-BDC reveal that the in situ formed rod-like Ni3FeOOH is the active site for the OER.  相似文献   

14.
Nickel ferrite (NiFe2O4) has been explored as a promising oxygen evolution reaction (OER) electrocatalyst for water splitting owning to its earth-abundant and considerable water oxidation catalytic activity. Nevertheless, its practical electrocatalytic performance towards OER is still undesirable due to the sluggish OER kinetics and high overpotential gap on the water oxidation anode side. In this work, in order to enhance the electrochemical water oxidation performance of NiFe2O4, the surface of NiFe2O4 is functionalized with phosphate ions (Pi) by using a facile incipient impregnation and following calcination process. Results demonstrate that the OER properties of NiFe2O4 under alkaline conditions can be dramatically boosted by the surface Pi functionalization. In 1.0 M KOH solution, the resulting NiFe2O4-Pi on glassy carbon (GC) electrode demonstrates quite lower overpotential of 332 mV (10 mA/cm2) and Tafel slope of 57 mV/dec compared to that of pristine NiFe2O4 (443 mV@10 mA/cm2 and 96 mV/dec), which is also better than that of commercial RuO2 electrocatalysts (348 mV@10 mA/cm2 and 80 mV/dec). Moreover, such electrocatalyst on nickel foam electrode also realizes superior OER durability to afford a current density of 70 mA/cm2 at overpotential of only 300 mV for at least 28 h. The excellent electrocatalytic water oxidation activities of NiFe2O4-Pi can be attributed to the tuning electronic property and surface wettability by Pi ions functionalization. This work provides us a novel and effective approach to modify the photo-/electrocatalytic activity for transition metal oxides.  相似文献   

15.
Design and direct construction of oxygen evolution reaction (OER) catalyst-based electrode is an efficient route to improve the water splitting reaction. Herein, we proposed a facile route to synthesize and load the composite of amorphous CoFe oxyhydroxide (CoFeOx(OH)y) and MoS2 on the carbon paper by combining a hydrothermal and an electrodeposition process. CoFeOx(OH)y has a special feature of long-range disorder (amorphous phase) and short-range order (crystal phase), which greatly improves the OER catalytic performance of the hybrids. In virtue of the synergistic effect of CoFeOx(OH)y and MoS2, an improved electronic coupling effect occurs, which increases the oxidation state of Co and Fe, and thus enhances OER activity. As-synthesized CoFeOx(OH)y/MoS2/CP (CFOMS/CP) electrode affords excellent electrocatalytic activity and good electrochemical OER stability: A small Tafel slope of 37.9 mV dec?1 (vs. 62.1 mV dec?1 for CoFeOx(OH)y/CP, 120.2 mV dec?1 for RuO2/CP) and low overpotential 242 mV at 10 mA cm?2 (vs. 263 mV for CoFeOx(OH)y/CP, 317 mV for RuO2/CP), as well as a stable running for 25 h.  相似文献   

16.
Water electrolysis is an energy conversion technology to provide green and clean hydrogen energy. Developing a high-efficient and durable electrocatalyst is a critical material for water electrolysis. Therefore, we synthesize a series of iron-doped metal-organic frameworks (MOFs) by a facile one-pot hydrothermal method. In the conventional three-electrode-cell, the Co/Fe (1:1)-MOF catalyst exhibits an overpotential of 317 mV at a current density of 10 mA cm−2 in the oxygen evolution reaction (OER). Furthermore, the electrolysis performance of Co/Fe (1:1)-MOF catalyst is further evaluated in a home-made anion-exchange-membrane water electrolysis cell. With the Co/Fe (1:1)-MOF as the OER catalyst and commercial Pt/C as the hydrogen-evolution-reaction catalyst, the cell presents an overpotential of 490 mV at a large current density of 500 mA cm−2, which is superior to the benchmark cell with commercial IrO2 as the OER catalyst in the alkaline media. Theoretical calculation demonstrates that the introduction of Fe dopant into MOFs significantly reduces the binding energy of 1O and 1OOH intermedium during the OER progress. Consequently, the electrocatalytic activity is increased, which is perfectly consistent with the experimental results. This work suggests that the iron-doped MOFs structure significantly improves the electrocatalytic activity and provides a facile strategy to produce hydrogen at a large current density for industrial water electrolysis.  相似文献   

17.
The exploration of efficient, low-cost and earth-abundant oxygen-evolution reaction (OER) electrocatalysts and the understanding of the intrinsic mechanism are important to advance the clean energy conversion technique based on electrochemical water oxidation. In this work, Fe-doping Co3N catalysts were successfully synthesized by a simple nitridation reaction of the Co3-xFexO4 precursor. This material exhibited a low overpotential of 294 mV at a current density of 10 mA cm?2, and a small Tafel slope of 49 mV dec?1 in 1 M KOH solution, superior to the performance of Co3N and IrO2. As revealed by the spectroscopic and electrochemical analyses, the enhanced OER performance mainly originates from the electronic modulation induced by the incorporation of Fe into Co3N, benefitting the formation of CoOOH as active surface species and thus facilitating the OER process. These findings also demonstrate the introduction of heterogeneous element is a simple and effective strategy to regulate the OER property of the cobalt nitrides (Co3N) catalysts.  相似文献   

18.
Exploiting environmentally friendly and robust oxygen evolution reaction (OER) electrodes is still a great difficulty to promote the water oxidation for electrocatalytic water splitting. In the work, molybdenum-doped nickel copper hydrotalcite (NiCuMox LDH) nanoarrays have been firstly in situ grown on nickel foam (NF) via a typical hydrothermal process. When NiCuMo0.2 LDH/NF was used as a OER electrocatalyst, it displays superior electrocatalytic performance with the need of small overpotentials of only 290 mV to drive 40 mA cm−2 and a low Tafel slope of 39.8 mV dec−1, which are almost one of the best water oxidation activities reported so far. The enhanced electrocatalytic performance is attributed to unique urchin-like structure, more exposure to active sites and enhanced charge transfer rate owing to the synergistic effect of Mo doping and NiCu LDH. The work put forward a new method for the development of efficient water oxidation electrocatalysts, which will fill the gap for the exploitation of trimetal LDH-based electrodes in large-scale water splitting applications in the future.  相似文献   

19.
An ongoing challenge still lies in the exploration of proficient electrocatalysts from earth-abundant non-precious metals instead of noble metal-based catalysts for clean hydrogen energy through large-Scale electrochemical water splitting. However, developing a non-precious transition metals based, stable electrocatalyst for cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) is important challenge for modern energy conversion technology. In this report Vanadium doped bimetallic nickel-iron nanoarray, fabricated by carbon supported architecture through carbonization process for electrochemical water splitting. Three types of catalysts were prepared in different molar ratio of Ni/Fe. The electrocatalytic performance demonstrated that the catalyst with equal mole ratio (0.06:0.06) of Ni/Fe possess high catalytic activity for both OER and HER in alkaline and acidic medium. Besides, our findings revealed that the doping of vanadium could play a strong synergetic effect with Ni/Fe, which provide a small overpotential of 90 mV and 210 mV at 10 mA cm?2 for HER and OER respectively compared to the other two catalyst counterparts. Also, the catalyst with 1:1 (Ni/Fe) molar ratio showed a high current density of 208 mA cm?2 for HER at 0.5 M H2SO4 and 579 mA cm?2 for OER at 1 M KOH solution, the both current densities are much higher than the other two catalysts (different Ni/Fe ratio). In addition, the presented catalysts showed extremely good durability, reflecting in more than 20 h of consistent Chronoamprometry study at fixed overpotential η = 250 mV without any visible voltage elevation. Similarly, the (Ni/Fe) equal ratio catalyst showed better corrosion potential 0.209 V vs Ag/AgCl and lower current density 0.594 × 10?12 A cm?2 in high alkaline medium. The V-doping, MOF/GO surface defects are significantly increased the corrosion potential of the V-NixFey-MOF/GO electrocatalyst. Besides, the water electrolyzed products were analysed by gas chromatography to get clear insights on the formed H2 and O2 products.  相似文献   

20.
Water electrolysis for green hydrogen production is gaining tremendous attention in the quest towards sustainable energy sources. At the heart of water splitting technology are the electrocatalysts, which facilitate the two half-cell reactions, i.e., the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with the latter being the most thermodynamically uphill. Herein, we managed to fabricate Ni1-xFexO microflowers (μFs) with varying % of Fe doping (0 < x < 0.36) via an easy chemical bath deposition (CBD) method. The as-synthesized μFs drop-casted on graphene paper (GP) are then applied as electrocatalysts for OER. Compared to contrast catalysts, the electrocatalyst with xFe = 0.1 exhibits a lower overpotential of 297 mV at a current density of 10 mA cm−2, Tafel slope of 44 mV dec−1 and unprecedented turnover frequency of 4.6 s−1 at 300 mV. It is believed that this remarkable electrochemical performance mainly stems from the synergistic effects of Ni and Fe species, working in harmony to enhance charge transfer kinetics and intrinsic activity of the catalyst. This work provides a promising avenue for developing cost-effective and highly active electrocatalysts as advanced electrodes for energy related applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号