首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The structure of Pt nanoparticles and the composition of the catalyst-Nafion films strongly determine the performance of proton exchange membrane fuel cells. The effect of Nafion content in the catalyst ink, prepared with a commercially available carbon-supported Pt, in the kinetics of the hydrogen oxidation reaction (HOR), has been studied by the thin layer rotating disk electrode technique. The kinetic parameters have been related to the catalyst nanoparticles structure, characterized by X-ray diffraction and high-resolution transmission electron microscopy. The size-shape analysis is consistent with the presence of 3D cubo-octahedral Pt nanoparticles with average size of 2.5 nm. The electrochemically active surface area, determined by CO stripping, appears to depend on the composition of the deposited Pt/C-Nafion film, with a maximum value of 73 m2 gPt−1 for 30 wt.% Nafion. The results of CO stripping indicate that the external Pt faces are mainly (1 0 0) and (1 1 1) terraces, thus confirming the cubo-octahedral structure of nanoparticles. Cyclic voltammetry combined with the RDE technique has been applied to study the kinetic parameters of HOR besides the ionomer resistance effect on the anode kinetic current at different ionomer contents. The kinetic parameters show that H2 oxidation behaves reversibly with an estimated exchange current density of 0.27 mA cm−2.  相似文献   

2.
This study demonstrated the feasibility of a high-performance membrane-electrode-assembly (MEA), with low electrocatalyst loading on carbon nanotubes (CNTs) grown directly on carbon cloth as an anode. The direct growth of CNTs was synthesized by microwave plasma-enhanced chemical vapor deposition using CH4/H2/N2 as precursors. The cyclic voltammetry and electrochemical impedance measurements with 1 mM Fe(CN)63−/4− redox reaction reveal a fast electron transport and a low resistance of charge transfer on the direct growth of CNT. The electrocatalysts, platinum and ruthenium, were coated on CNTs by sputtering to form Pt-Ru/CNTs-CC with carbon cloth for CC. Pt-Ru electrocatalysts are uniformly dispersed on the CNT, as indicated by high-resolution scanning electron microscopy (HRSEM) and transmission electron microscopy (TEM), because the nitrogen doped in the CNT acts as active sites for capturing electrocatalysts. The MEA, the sandwiched structure which comprises 0.4 mg cm−2 Pt-Ru/CNTs-CC as the anode, 3.0 mg cm−2 Pt black as the cathode and Nafion 117 membrane at the center, performs very well in a direct methanol fuel cell (DMFC) test. The micro-structural MEA analysis shows that the thin electrocatalyst layer is uniform, with good interfacial continuity between membrane and the gas diffusion layer.  相似文献   

3.
The electrochemical activity of high performance unsupported (1:1) Pt–Ru electrocatalyst in the presence of hydrogen and carbon monoxide has been studied using the thin-film rotating disk electrode (RDE) technique. The kinetic parameters of these reactions were determined in H2- and CO-saturated 0.5 M H2SO4 solutions by means of cyclic voltammetry, including CO stripping, and RDE voltammetry. Pt–Ru/Nafion inks were prepared in one step with different Nafion mass fractions, allowing determining the ionomer influence in electrocatalytic response and obtaining the kinetic current density in absence of mass-transfer effects, being 41 and 12 mA cm2 (geometrical area), for H2 and CO oxidation, respectively. These values correspond to mass activities of 1.37 and 0.40 A mgPt1 and to specific activities of 1.52 and 0.44 mA cmPt2. The Tafel analysis confirmed that hydrogen oxidation was a two-electron reversible reaction, while CO oxidation exhibited an irreversible behavior with a charge-transfer coefficient of 0.42. The kinetic results for CO oxidation are in agreement with the bifunctional theory, in which the reaction between Pt–CO and Ru–OH is the rate-determining step. The exchange current density for hydrogen reaction was 0.28 mA cm2 (active surface area), thus showing similar kinetics to those found for carbon-supported Pt and Pt–Ru electrocatalyst nanoparticles.  相似文献   

4.
Carbon supported Pt-Cu bimetallic nanoparticles are prepared by a modified NaBH4 reduction method in aqueous solution and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP) and fuel cell test. The results show that the carbon supported Pt-Cu bimetallic catalysts have much higher catalytic activity for the direct oxidation of BH4 than the carbon supported pure nanosized Pt catalyst, especially the Pt50Cu50/C catalyst presents the highest catalytic activity among all as-prepared catalysts, and the DBHFC using Pt50Cu50/C as anode electrocatalyst and Pt/C as cathode electrocatalyst shows as high as 71.6 mW cm−2 power density at a discharge current density of 54.7 mA cm−2 at 25 °C.  相似文献   

5.
The carbon supported Pt hollow nanospheres were prepared by employing cobalt nanoparticles as sacrificial templates at room temperature in aqueous solution and used as the anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the as-prepared electrocatalysts were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP) and fuel cell test. The results showed that the carbon supported Pt nanospheres were coreless and composed of discrete Pt nanoparticles with the crystallite size of about 2.8 nm. Besides, it has been found that the carbon supported Pt hollow nanospheres exhibited an enhanced electrocatalytic performance for BH4 oxidation compared with the carbon supported solid Pt nanoparticles, and the DBHFC using the carbon supported Pt hollow nanospheres as electrocatalyst showed as high as 54.53 mW cm−2 power density at a discharge current density of 44.9 mA cm−2.  相似文献   

6.
A direct alkaline fuel cell with a liquid potassium hydroxide solution as an electrolyte is developed for the direct use of methanol, ethanol or sodium borohydride as fuel. Three different catalysts, e.g., Pt-black or Pt/Ru (40 wt.%:20 wt.%)/C or Pt/C (40 wt.%), with varying loads at the anode against a MnO2 cathode are studied. The electrodes are prepared by spreading the catalyst slurry on a carbon paper substrate. Nickel mesh is used as a current-collector. The Pt–Ru/C produces the best cell performance for methanol, ethanol and sodium borohydride fuels. The performance improves with increase in anode catalyst loading, but beyond 1 mg cm−2 does not change appreciably except in case of ethanol for which there is a slight improvement when using Pt–Ru/C at 1.5 mA cm−2. The power density achieved with the Pt–Ru catalyst at 1 mg cm−2 is 15.8 mW cm−2 at 26.5 mA cm−2 for methanol and 16 mW cm−2 at 26 mA cm−2 for ethanol. The power density achieved for NaBH4 is 20 mW cm−2 at 30 mA cm−2 using Pt-black.  相似文献   

7.
Sol–gel derived Nafion/SiO2 hybrid membrane is prepared and employed as the separator for vanadium redox flow battery (VRB) to evaluate the vanadium ions permeability and cell performance. Nafion/SiO2 hybrid membrane shows nearly the same ion exchange capacity (IEC) and proton conductivity as pristine Nafion 117 membrane. ICP-AES analysis reveals that Nafion/SiO2 hybrid membrane exhibits dramatically lower vanadium ions permeability compared with Nafion membrane. The VRB with Nafion/SiO2 hybrid membrane presents a higher coulombic and energy efficiencies over the entire range of current densities (10–80 mA cm−2), especially at relative lower current densities (<30 mA cm−2), and a lower self-discharge rate compared with the Nafion system. The performance of VRB with Nafion/SiO2 hybrid membrane can be maintained after more than 100 cycles at a charge–discharge current density of 60 mA cm−2. The experimental results suggest that the Nafion/SiO2 hybrid membrane approach is a promising strategy to overcome the vanadium ions crossover in VRB.  相似文献   

8.
A simple, rapid and energy-saving method has been used to synthesize nanostructured tungsten carbide on graphitized carbon (WC/gC) materials. The procedures include the ion exchange of the ion-exchange resin as original precursor with targeting ions and heat treatment by an intermittent microwave heating (IMH) method. The resulting product was loaded by Pt nanoparticles to form a uniformly dispersed nanocomposite (Pt-WC/gC). The samples are characterized by physical and electrochemical methods. The Pt-WC/gC as electrocatalyst for oxygen reduction reaction shows high activity proved by the Pt-mass activity of 207.4 mA mg−1Pt which is much higher than that of 107.4 mA mg−1Pt on Pt/C at 0.9 V. The onset potential for methanol oxidation is 100 mV more negative than that on Pt/C electrocatalyst. The synthesis of other types of nanomaterials based on this method is current under way to demonstrate the general suitability.  相似文献   

9.
The Pt nanoparticles have been well dispersed on electrospinning-derived carbon fibrous mats (CFMs) by using formaldehyde vapor as reducer to react with H2PtCl6·6H2O adsorbed on the CFMs at 160 °C. The prepared electrodes of Pt-CFMs have been characterized by using scanning electron microscopy, transmission electron microscopy and X-ray diffraction spectroscopy, and the performance of the electrodes for methanol oxidation has been investigated by using cyclic voltammetry, chronoamperometry, quasi-steady state polarization and electrochemical impedance spectroscopy techniques. The results demonstrate that Pt-CFMs electrodes exhibit peak current density of 445 mA mg−1 Pt, exchange current of 235.7 μA cm−2, charge transfer resistance of 16.1 Ω cm2 and better stability during the process of methanol oxidation, which are superior to the peak current density of 194 mA mg−1 Pt, exchange current of 174.7 μA cm−2 and charge transfer resistance of 39.4 Ω cm2 obtained for commercial Pt/C supported on CFMs. It indicates that the novel process in which formaldehyde vapor is used as reducer to prepare Pt catalyst with high performance can be developed.  相似文献   

10.
We investigate the sputtering deposition as a tool for preparing Polymer Electrolyte Membrane Fuel Cell (PEMFC) electrodes with improved performance and catalyst utilization. Anodes of PEMFC with ultra-low loading of Pt (0.05 mg cm−2) are developed by alternate sputtering of Pt and painting layers of carbon nanotube ink with Nafion directly on the gas diffusion layer. Sputter depositing alternate layers of Pt on carbon-Nafion layer (CNL) has increased the anode activity over single-layer Pt deposited anode due to improved porosity and the presence of Pt nanoparticles in the inner CNL. Also, we investigated the influence of Nafion content in the CNL. The optimal Nafion content giving less resistance and better performance in an anode is 29 wt.%. This is significantly lower than for standard MEA anodes, indicating sufficient interfacial contact between each CNL. We studied the anodes prepared with 50 wt.% Nafion, which revealed larger ohmic resistance and also, blocks the CNL pores reducing gas permeability. Excellent mass transfer and performance is obtained with three-layer Pt sputter deposited anode with CNL containing 29 wt.% of Nafion.  相似文献   

11.
Highly graphitic carbon xerogel (GCX) is prepared by the modified sol-gel polymerization process using cobalt nitrate as the catalyst, followed by high temperature treatment at 1800 °C. The as-prepared GCX is explored as a stable support for Pt in proton exchange membrane fuel cells. The results of N2 sorption measurement and X-ray diffraction analysis (XRD) reveal that GCX has a better mesoporous structure and a preferably higher degree of graphitization, compared with the commercial XC-72 carbon black. The transmission electron microscopy (TEM) image indicates that Pt nanoparticles are well dispersed on GCX and exhibit relatively narrow size distribution. Accelerated aging test (AAT) based on potential cycling is used to investigate the durability of the as-prepared Pt/GCX in comparison with the commercial Pt/C. Electrochemical analysis demonstrates that the catalyst with GCX as a support exhibits an alleviated degradation rate of electrochemical active surface area (39% for Pt/GCX and 53% for Pt/C). The results of single cell durability tests indicate that the voltage loss of Pt/GCX at 100 mA cm−2 is about 50% lower than that of Pt/C. GCX is expected to be a corrosion resistant electrocatalyst support.  相似文献   

12.
Thin film Pt/TiO2 catalysts are evaluated in a polymer electrolyte electrochemical cell. Individual thin films of Pt and TiO2, and bilayers of them, were deposited directly on Nafion membranes by thermal evaporation with varying deposition order and thickness (Pt loadings of 3–6 μg cm−2). Structural and chemical characterization was performed by transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Oxygen reduction reaction (ORR) polarization plots show that the presence of a thin TiO2 layer between the platinum and the Nafion increases the performance compared to a Pt film deposited directly on Nafion. Based on the TEM analysis, we attribute this improvement to a better dispersion of Pt on TiO2 compared to on Nafion and in addition, substantial proton conduction through the thin TiO2 layer. It is also shown that deposition order and the film thickness affects the performance.  相似文献   

13.
Enhancement in durability of electrocatalyst is still one of the most important issues in polymer electrolyte fuel cells (PEFCs). Here, we report a structurally coated electrocatalyst supported on carbon nanotubes (CNT), in which platinum (Pt) nanoparticles are coated by nitrogen doped carbon (NC) layers. CNT/NC/Pt/NC shows comparable electrochemical surface area (ECSA) and oxygen reduction reaction (ORR) activity to the non-coated electrocatalyst (CNT/NC/Pt), indicating that NC layer on Pt nanoparticles almost negligibly affects the activities of electrocatalyst; while, CNT/NC/Pt/NC exhibits a higher Pt stability due to the unique structure, in which the Pt nanoparticles are stabilized by the NC layers and Pt aggregation is decelerated proved by TEM measurement. Maximum power density of CNT/NC/Pt/NC reached 604 mW cm?2 with Pt loading of 0.1 mgPt cm?2, which only decreases by 7% compared to CNT/NC/Pt (650 mW cm?2). The electrochemical analysis and fuel cell test illustrate that NC layer on Pt nanoparticles enhances the durability without serious deterioration of fuel cell performance.  相似文献   

14.
The performance of high temperature polymer electrolyte fuel cell (HT-PEMFC) using platinum supported over tin oxide and Vulcan carbon (Pt/SnOx/C) as cathode catalyst was evaluated at 160-200 °C and compared with Pt/C. This paper reports first time the Pt/SnOx/C preparation, fuel cell performance, and durability test up to 200 h. Pt/SnOx/C of varying SnO compositions were characterized using XRD, SEM, TEM, EDX and EIS. The face-centered cubic structure of nanosized Pt becomes evident from XRD data. TEM and EDX measurements established that the average size of the Pt nanoparticles were ∼6 nm. Low ionic resistances were derived from EIS, which ranged from 0.5 to 5 Ω-cm2 for cathode and 0.05 to 0.1 Ω-cm2 for phosphoric acid, doped PBI membrane. The addition of the SnOx to Pt/C significantly promoted the catalytic activity for the oxygen reduction reaction (ORR). The 7 wt.% SnO in Pt/SnO2/C catalyst showed the highest electro-oxidation activity for ORR. High temperature PEMFC measurements performed at 180 °C under dry gases (H2 and O2) showed 0.58 V at a current density of 200 mA cm−2, while only 0.40 V was obtained in the case of Pt/C catalyst. When the catalyst contained higher concentrations of tin oxide, the performance decreased as a result of mass transport limitations within the electrode. Durability tests showed that Pt/SnOx/C catalysts prepared in this work were stable under fuel cell working conditions, during 200 h at 180 °C demonstrate as potential cathode catalyst for HT-PEMFCs.  相似文献   

15.
A novel Pt/zeolite–Nafion (PZN) polymer electrolyte composite membrane is fabricated for self-humidifying polymer electrolyte membrane fuel cells (PEMFCs). A uniform dispersion of Pt nanoparticles with an average size of 3 nm is achieved by ion-exchange of the zeolite HY. The Pt nanoparticles embedded in the membrane provide the catalytic sites for water generation, whereas the zeolite HY-supported Pt particles absorbs water and make it available for humidification during cell operation at elevated temperature. Compared with the performance of ordinary membranes, the performance of cells with PZN membranes is improved significantly under dry conditions. With dry H2 and O2 at 50 °C, the PZN membrane with 0.65 wt.% of Pt/zeolite (0.03 mg Pt cm−2) gives 75% of the performance obtained at 0.6 V with the humidified reactants at 75 °C. Impedance analysis reveales that an increase in charge-transfer resistance is mainly responsible for the cell performance loss operated with dry gases.  相似文献   

16.
Addressed herein is the synthesis of binary CuPt alloy nanoparticles (NPs), their assembly on reduced graphene oxide (rGO), Vulcan XC72 (VC) and their hybrid (rGO-VC) to be utilized as electrocatalysts for fuel cell reactions (HOR and ORR) in acidic medium and PEMFC tests. The synthesis of nearly-monodisperse Cu45Pt55 alloy NPs was achieved by using a chemical reduction route comprising the reduction of commercially available metal precursors in a hot surfactant solution. As-synthesized Cu45Pt55 alloy NPs were then assembled on three support materials, namely rGO, VC and rGO-VC) via liquid phase self-assembly method. After the characterization, the electrocatalysts were prepared by mixing the yielded materials with Nafion and their electrocatalysis performance was investigated by studying CV and LSV for HOR and ORR in acidic medium. Among the three electrocatalysts tested, Cu45Pt55/rGO-VC hybrid showed the highest catalytic activity with ECSA of 119 m2 g−1 and mass activity of 165 mA mg−1Pt. After the evaluation of electrochemical performance of the three prepared electrocatalysts, their performance was then evaluated in fuel cell conditions. In similar to electrochemical activities, the Cu45Pt55/rGO-VC hybrid electrocatalyst showed a superior fuel cell performance and power output by providing a maximum power of 480 mW cm−2 with a relatively low Pt loading (0.28 mg cm−2). Additionally, the Cu45Pt55/rGO-VC hybrid electrocatalyst exhibited substantially better activity as compared to Pt/rGO-VC electrocatalyst. Therefore, the present study confirmed that alloying Pt with Cu enhances the catalytic activity of Pt metal along with the help of beneficial features of rGO-VC hybrid support material. It should be noted that this is the first example of studying PEMFC performance of CuPt alloy NPs supported on rGO, VC and rGO-VC hybrid.  相似文献   

17.
Electrodes constructed with different electroactive materials such as platinum (Pt), nickel (Ni), 304 stainless steel (SS) and low carbon steel (LCS) have been tested in water electrolysis using 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF4). All experiments were performed at room temperature using a classical Hoffman's cell operating at atmospheric pressure and at different cathodic potentials. For the electrodes studied herein, in the presence of a 10 vol.% solution of BMI.BF4 in water, current densities (j) in the range 10–42 mA cm−2 were observed, with overall hydrogen production efficiencies (experimental/theoretical hydrogen production ratio) between 82 and 98%. The highest j values obtained with Pt, Ni, SS and LCS electrodes were 30, 12, 10 and 42 mA cm−2, respectively, and all efficiencies were in the 85–99% range. These comparative results show that the LCS electrocatalyst constitutes an attractive alternative for the technological production of high purity hydrogen by water electrolysis reaction since the LCS electrode gave j and efficiencies as high as those observed with platinum electrodes.  相似文献   

18.
The kinetic parameters of carbon monoxide and methanol oxidation reactions on a high performance carbon-supported Pt-Ru electrocatalyst (HP 20% 1:1 Pt-Ru alloy on Vulcan XC-72 carbon black) have been studied using cyclic voltammetry and rotating disk electrode (RDE) techniques in 0.50 M H2SO4 and H2SO4 (0.06-0.92 M) + CH3OH (0.10-1.00 M) solutions at 25.0-45.0 °C. CO oxidation showed an irreversible behaviour with an adsorption control giving an exchange current density of 2.3 × 10−6 A cm−2 and a Tafel slope of 113 mV dec−1 (α = 0.52) at 25.0 °C. Methanol oxidation behaved as an irreversible mixed-controlled reaction, probably with generation of a soluble intermediate (such as HCHO or HCOOH), showing an exchange current density of 7.4 × 10−6 A cm−2 and a Tafel slope of 199 mV dec−1 (α = 0.30) at 25.0 °C. Reaction orders of 0.5 for methanol and −0.5 for proton were found, which are compatible with the consideration of the reaction between Pt-CO and Ru-OH species as the rate-determining step, being the initial methanol adsorption adjustable to a Temkin isotherm. The activation energy calculated through Arrhenius plots was 58 kJ mol−1, practically independent of the applied potential. Methanol oxidation on carbon-supported Pt-Ru electrocatalyst was improved by multiple potential cycles, indicating the generation of hydrous ruthenium oxide, RuOxHy, which enhances the process.  相似文献   

19.
The fuel cell performance (DMFC and H2/air) of highly fluorinated comb-shaped copolymer is reported. The initial performance of membrane electrode assemblies (MEAs) fabricated from comb-shaped copolymer containing a side-chain weight fraction of 22% are compared with those derived from Nafion and sulfonated polysulfone (BPSH-35) under DMFC conditions. The low water uptake of comb copolymer enabled an increase in proton exchange site concentrations in the hydrated polymer, which is a desirable membrane property for DMFC application. The comb-shaped copolymer architecture induces phase separated morphology between the hydrophobic fluoroaromatic backbone and the polysulfonic acid side chains. The initial performance of the MEAs using BPSH-35 and Comb 22 copolymer were comparable and higher than that of the Nafion MEA at all methanol concentrations. For example, the power density of the MEA using Comb 22 copolymer at 350 mA cm−2 and 0.5 M methanol was 145 mW cm−2, whereas the power densities of MEAs using BPSH-35 were 136 mW cm−2. The power density of the MEA using Comb 22 copolymer at 350 mA cm−2 and 2.0 M methanol was 144.5 mW cm−2, whereas the power densities of MEAs using BPSH-35 were 143 mW cm−2.  相似文献   

20.
Electrocatalyst stability is an important factor influencing the performance of polymer electrolyte membrane (PEM) fuel cells and is essential in maintaining the cell output. The aim of this work was to elucidate factors which influence the stability of platinum supported onto graphitic nanofibres (Pt/GNFs) and to compare the performance of these materials with the commonly used Pt/Vulcan electrocatalyst. Platinum nanoparticles (average diameter of 6.9 nm) were supported on GNFs which were prepared by chemical vapour deposition over an unsupported nickel oxide (NiO) catalyst precursor. The performance of Pt/GNFs based electrodes were studied by cyclic voltammetry and a single-cell fuel cell test and were compared with a commercially available carbon nanostructure, Vulcan XC-72, which was also impregnated with Pt nanoparticles. Characterisation of the pre- and post-operation of the Pt/GNFs by XRD and TEM showed that structural changes of the Pt had occurred during testing. It was found that the average diameter of each grain and the degree of agglomeration among particles was increased, creating elongated clusters of Pt along the carbon fibre. Analysis of electrocatalyst post-operation also identified that the sulphate from the Nafion membrane was reacting with the Pt surface forming platinum sulphide (PtS). These phases were confirmed by the presence of low intensity, but sharp XRD peaks, attributed to a few large diameter particles (49 nm). These two factors resulted in current density dropping from 0.2 A/cm2 to 0.1 A/cm2 (at 0.70 V) over a 25 h test period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号