首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A Ni/NiFe2 dual-layer coating is deposited on 50-h pre-oxidized SUS 430 steel by magnetron sputtering for solid oxide fuel cell (SOFC) interconnects application, followed by thermal exposure in air at 800 °C for 1680 h. The thermally grown oxide scales exhibit tri-layer structure with inner Cr2O3 layer, middle NiO layer and outer NiFe2O4 spinel layer. The oxide coating converted from Ni/NiFe2 coating not only inhibit the growth of Cr2O3 and the outward diffusion of Cr species but also improve the electrical performance of the surface scale. In addition, pre-oxidation treatment for the steel before Ni/NiFe2 coating deposition prevents the interdiffusion between steel substrate and coating in the oxidation process.  相似文献   

2.
NiFe2O4 spinel coating is promising for solid oxide fuel cell (SOFC) steel interconnects application. In this work, NiFe2 alloy coating was sputtered on bare steel and preoxidized steel (100 h in air at 800 °C), respectively, followed by exposing in air at 800 °C for up to 15 weeks in order to investigate the influence of steel preoxidation on high temperature behaviors of the coated steels. The results indicated that an outer NiFe2O4 spinel layer atop an inner Cr2O3 layer formed on the coated samples after oxidation. The preoxidation enhanced the oxidation resistance of the coated sample and reduced Cr out-migration to NiFe2O4 spinel layer. After 15 weeks, the area specific resistance (ASR) of surface scale on the coated preoxidized steel was much lower than that on the coated bare steel. The mechanisms of the preoxidation influence on oxidation behavior and surface scale electrical property of the coated steels were discussed.  相似文献   

3.
Ferritic stainless steels are promising materials for application in interconnects of solid oxide fuel cells (SOFC). The present problems to be solved urgently for using ferritic stainless steels as interconnects are their rapid increase in electrical resistance and the cathode poisoning caused by evaporation of chromia. In the present study, the NiFe and NiFeCeO2 alloy coatings have been electro-deposited onto 430 stainless steels (430SS). During oxidation at 800 °C in air, an outer dense NiFe2O4 layer and an inner protective Cr2O3 layer have thermally grown on the coated samples. The NiFe2O4 layer retards the outward migration of chromium effectively. The addition of CeO2 reduces the growth rate of Cr2O3 and decreases the number of pores near the oxide scale/alloy interface. Moreover, a higher electrical conductivity has been achieved by the addition of CeO2.  相似文献   

4.
Currently used ferritic stainless steel interconnects are unsuitable for practical applications in solid oxide fuel cells operated at intermediate temperatures due to chromium volatility, poisoning of the cathode material, rapidly decreasing electrical conductivity and a low oxidation resistance. To overcome these problems, a novel, simple and cost-effective high-energy micro-arc alloying (HEMAA) process is proposed to prepare LaCrO3-based coatings for the type 430 stainless steel interconnects. However, it is much difficult to deposit an oxide coating by HEMAA than a metallic coating due to the high brittleness of oxide electrodes for deposition. Therefore, a Cr-alloying layer is firstly obtained on the alloy surface by HEMAA using a Cr electrode rod, followed by a LaCrO3-based coating using an electrode rod of LaCrO3-20 wt.%Ni, with a metallurgical bonding between the coating and the substrate. The preliminary oxidation tests at 850 °C in air indicate that the LaCrO3-based coatings showed a three-layered microstructure with a NiFe2O4 outer layer, a thick LaCrO3 sub-layer and a thin Cr2O3-rich inner layer, which thereby possesses an excellent protectiveness to the substrate alloy and a low electrical contact resistance.  相似文献   

5.
The previous investigation suggested the approach for an in situ formation of Cr2O3 diffusion barrier by annealing the cold-sprayed Ni coatings on 310SS. In this paper, the influences of annealing conditions on the growth kinetics of Cr2O3 and substrate microstructure were investigated. Results show that Cr2O3 formed at the selected annealing temperatures of 850, 900 and 950°C for different durations of 4, 8 and 20?h. Increasing temperature enhanced the growth kinetics of Cr2O3 and the Mn content in the oxide layer. The annealing process for the growth of Cr2O3 improves the coating adhesion compared to the as-deposited coating. However, annealing at 950°C resulted in the precipitation of chromium carbides and enhanced the element inter-diffusion across the substrate/coating interface.  相似文献   

6.
Ni/CeO2 mulriple coating has been fabricated on SUS 430 steel via electrodepositing approach. 100-h initial and 3-week long-term thermal exposing to air at 800 °C has enunciated that the oxide scale grown on the Ni/CeO2 coated steel contains an external oxide layer of NiFe2O4 spinel, a middle oxide layer of NiO and an internal oxide layer of Cr2O3. Simultaneously, dispersive CeO2 particles embed in the oxide scale. Compared to the Ni coated steel on which the same tri-layer oxide structure without discrete CeO2 particles grows in the same exposing environment, growth rate of the internal Cr2O3 layer on the Ni/CeO2 coated steel has been profoundly suppressed, which subsequently lowers the oxide scale area specific resistance (ASR). Enhancement of the oxidation resistance and reduction of the oxide scale ASR are attributed to the presence of CeO2.  相似文献   

7.
Solid Oxide Fuel Cells (SOFCs) are electrochemical conversion devices that produce electricity directly by oxidising a fuel. The interconnects between the individual cells need to be coated to limit Cr(VI) evaporation from the steel and to preserve electrical conductivity. Physical Vapour Deposition (PVD)-coated samples with Ce/Co, Ce/Cu, and Ce/MnCu, and Thermal Spray (TS)-coated Mn/Co, Cu and Mn/Cu and AISI 441 steel samples were exposed at 650 °C for up to 1000 h. The PVD Ce/Co and Ce/Cu coatings, as well as the TS Mn/Co coating, exhibited the formation of a thin protective Cr2O3 scales underneath the coating. These samples also exhibited the lowest area-specific resistance (ASR) values. The remainder of the samples exhibited much higher mass gains and higher ASR values. Cr(VI) evaporation measurements showed that all the coatings behaved approximately the same despite the PVD coatings being only about one-tenth of the thickness of the TS coatings.  相似文献   

8.
Even though the operation temperature of solid oxide fuel cells (SOFCs) stacks has been reduced (∼750 °C), stainless steel interconnect within the stacks still requires protection by high conductive coatings to delay the growth of oxide scales and reduce chromium evaporation. Manganese cobaltite spinel protective coating with a nominal composition of MnCo2O4 was produced on Fe-21Cr stainless steel. Electrical, microstructural and compositional analysis were performed to investigate the interfacial reaction of MnCo2O4 protective coating with the stainless steel substrate during 750 °C oxidation process. The spinel coating not only acts as a barrier to Cr outward transport, but also improves the electrical conductivity of the alloy interconnect during long-term oxidation. The coated alloy demonstrates good electrical conductivity with an area specific resistance (ASR) of about 5 mOhm cm2 after oxidation for 1000 h at 750 °C, which is about 1/4 of the ASR of bare Fe-21Cr alloy. The reduction of ASR might be caused by the fact that Cr migrated from the steel substrate interact with MnCo2O4 coating and generated Mn-Co-Cr spinel phase, which has higher electrical conductivity than that of Cr2O3.  相似文献   

9.
Ferritic stainless steels with Ti addition are considered as promising candidates for SOFC interconnect application. In this study, the effect of Ti addition on the electrical conductivity and Cr evaporation resistance was discussed in terms of microstructure and ionic property of the oxide scale by using TEM analysis and asymmetry polarization method. Ti addition induced the generation of ionic defects in the oxide layer and modified the growth kinetics of Cr2O3 and MnCr2O4, but in different manner depending on Ti amount. Ti content in a range of 0.05–0.07 wt% was effective for reducing the oxidation rate and electrical resistance. Addition of 1 wt% Ti promoted fast Cr2O3 growth due to the excess ionic defect in Cr2O3 matrix. However, the formation of the outermost MnCr2O4 layer was accelerated by Ti segregation near the scale/alloy interface and it reduced Cr evaporation effectively. Co-addition of a small amount of Ti and La enhanced Ti segregation without generation of excess ionic defect and improved both the electric conductivity and Cr evaporation resistance.  相似文献   

10.
Fe-Ni alloy is electrodeposited on ferritic stainless steel for intermediate-temperature solid oxide fuel cell (SOFC) interconnects application. The oxidation behavior of Fe-Ni alloy coated steel has been investigated at 800 °C in air corresponding to the cathode environment of SOFC. It is found that the oxidation rate of the Fe-Ni alloy coated steel becomes similar to that of the uncoated steel after the first week thermal exposure, although the mass gain of the coated steel is higher than that of the uncoated steel. Oxide scale formed on the uncoated steel mainly consists of Cr2O3 with (Mn,Cr)3O4 spinel. However, a double-layer oxide structure with a Cr-free outer layer of Fe2O3/NiFe2O4 and an inner layer of Cr2O3 is developed on the Fe-Ni alloy coated steel. The scale area specific resistance (ASR) for the Fe-Ni alloy coated steel is lower than that of the scale for the uncoated steel.  相似文献   

11.
A Ferrite/zirconia foam device in which reticulated ceramic foam was coated with zirconia-supported Fe3O4 or NiFe2O4 as a reactive material was prepared by a spin-coating method. The spin-coating method can shorten the preparation period and reduce the coating process as compared to the previous wash-coating method. The foam devices were examined for hydrogen productivity and cyclic reactivity in thermochemical two-step water-splitting. The reactivity of these foam devices were studied for the thermal reduction of ferrite on a laboratory scale using a sun simulator to simulate concentrated solar radiation, while the thermally reduced foam devices were reacted with steam in another quartz reactor under homogeneous heating in an infrared furnace. The most reactive foam device, NiFe2O4/m-ZrO2/MPSZ, was tested for successive two-step water-splitting in a windowed single reactor using solar-simulated Xe-beam irradiation with a power input of 0.4-0.7 kWth. The production of hydrogen continued successfully in the 20 cycles that were demonstrated using the NiFe2O4/m-ZrO2/MPSZ foam device. The NiFe2O4/m-ZrO2/MPSZ foam device produced hydrogen at a rate of 1.1-4.6 cm3 per gram of device through 20 cycles and reached a maximum ferrite conversion of 60%.  相似文献   

12.
Interconnects employed in solid oxide fuel cells require electrically conductive protective coatings such as those based on manganese cobalt oxide spinels in order to prevent evaporation of volatile Cr(VI)-compounds and to minimize high temperature corrosion. MnCo2−xFexO4 based (where x = 0.1 and 0.3) oxide spinel protective coatings were manufactured by the atmospheric plasma spraying process on Crofer 22 APU substrates. The coated substrates were oxidized at 700 °C in air for 1000 h and post-mortem analyses were conducted to study the performance of the thermal sprayed coatings. During the high temperature oxidation, a four-point on-line measurement technique was used for area specific resistance studies. The MnCo1.7Fe0.3O4 coating was tested together with the La0.85Sr0.15Mn1.1O3-spacer.  相似文献   

13.
Mixed transition-metal oxide coatings are commonly applied to stainless steel interconnects for solid oxide cell stacks. Such coatings reduce oxidation and Cr evaporation rates, leading to improved degradation rate and stack lifetime. Here, the ChromLok? MCO-based composition (Mn,Co)3O4 is applied to Crofer 22 APU stainless steel and evaluated specifically for application in solid oxide electrolyzer stacks operating around 800 °C and utilizing oxygen-ion-conducting solid oxide cells. The MCO coating is found to decrease the stainless steel oxidation rate by about one order of magnitude, and decrease the Cr evaporation rate by fourfold. The coating also dramatically lowers the rate of area-specific resistance increase for stainless steel coupons oxidized for 500 h with constant current applied, from 33 mΩ1cm2 kh?1 for an uncoated coupon to less than 4 mΩ1cm2 kh?1 for coated coupons. The coating is demonstrated on full-scale interconnects for single-cells, where the coating dramatically reduces degradation rate, and for a stack, which displays stable operation for 700 h.  相似文献   

14.
Metal oxides and carbides are promising tritium permeation barrier coatings for fusion reactors. However, the thermomechanical mismatch between the coating and substrate poses a threat to their interface's integrity during fabrication and operation. To address this issue, a metallic interlayer coating was introduced followed by selective oxidation in which a compact and uniform CrC amorphous alloy coating was successfully deposited on the stainless steel substrate by pulsed electrochemical deposition. A new composite coating of CrxCy@Cr2O3/Al2O3 was formed by subsequent controlled oxidation conversion and atomic layer deposition. The phase, morphology, chemical state and defects of the films were analyzed and compared both before and after hydrogen exposure at 300 °C. The results show that this new kind of composite coating, based on the principles of grain boundary pinning of chromic oxide with carbide and defect healing of alumina, can remarkably improve the hydrogen permeation barrier performance of these materials.  相似文献   

15.
T441 has been identified as the candidate for SOFC interconnect material because it is assumed that with the addition of Nb, Ti in T441, the formation of continuous silica sub-layer could be avoided or delayed due to Nb and Si rich secondary phase formation stabilizing silicon migration. Previously, electrodeposition Mn/Co alloys followed by oxidation has been proved as a simple and cost effective method to fabricate (Mn, Co)3O4 coatings. In this work, Mn/Co coated T441 interconnects were tested as the cathode current collector of solid oxide fuel cells. For comparison, uncoated and 500 h pre-oxidized T441 interconnects were tested as well. The cell with coated interconnect shows stable performance during total 850 h test, even after severe thermal cycles (heating rate 26.7 °C/min). The coating shows good adhesion with substrate and it can prevent Cr poisoning on SOFC cathode. While the cell with uncoated and pre-oxidized T441 interconnects degrade rapidly. XRD results show the coating peaks shifted from mainly Co3O4 with some little Mn before test to MnCo2O4 after test due to Mn diffusion from substrate. No Cr penetrated to the coating layer, as further proved by EDX linescan. The effect of laves phase on the Cr2O3 sub-layer formation and coating thickness was further discussed.  相似文献   

16.
The synthesis of Ag3PO4/Ag was performed through in-situ deposition and photo-reduction processes with magnetic NiFe2O4 nanofibers towards enhanced photocatalysis performance and stability. NiFe2O4 inhibit the photoreduction of Ag3PO4 into Ag and resulted in high stability. The photocatalytic activity of Ag3PO4/Ag/NiFe2O4 samples was studied by methylene blue degrading under visible light irradiation. The Ag3PO4/Ag/NiFe2O4 photocatalyst with NiFe2O4 loading of 3% revealed good photocatalytic performance, high stability and quick degradation after 5 cycles. Photoluminescence spectra and photocurrent tests demonstrated that the formation of hetero-junction facilitated the separation of photo-generated carriers. The trapping experiments confirmed that h+ and ?OH were active species during the degradation process.  相似文献   

17.
In an effort to improve the performance of SUS 430 alloy as a metallic interconnect material, a low cost and Cr-free spinel coating of NiMn2O4 is prepared on SUS 430 alloy substrate by the sol-gel method and evaluated in terms of the microstructure, oxidation resistance and electrical conductivity. A oxide scale of 3-4 μm thick is formed during cyclic oxidation at 750 °C in air for 1000 h, consisting of an inner layer of doped Cr2O3 and an outer layer of doped NiMn2O4 and Mn2O3; and the growth of Cr2O3 and formation of MnCr2O4 are depressed. The oxidation kinetics obeys the parabolic law with a rate constant as low as 4.59 × 10−15 g2 cm−4 s−1. The area specific resistance at temperatures between 600 and 800 °C is in the range of 6 and 17 mΩ cm2. The above results indicate that NiMn2O4 is a promising coating material for metallic interconnects of the intermediate temperature solid oxide fuel cells.  相似文献   

18.
Ni–Fe2O3 composite coating was applied onto ferritic stainless steel using the cost-effective method of electroplating for intermediate temperature solid oxide fuel cell (SOFC) interconnects application. By comparison, the coated and bare steels were evaluated at 800 °C in air corresponding to the cathode environment of SOFC. The oxidation investigations indicated that the oxidation rate of the coated steel was close to that of the bare steel after initially rapid mass gain. The mass gain of the coated steel was higher than that of the bare steel owing to the formation of double-layer oxide structure with an outer layer of (Ni,Fe)3O4/NiO atop an inner layer of Cr2O3. The area specific resistance (ASR) of the double-layer oxide scale was lower than that of the Cr2O3 scale thermally grown on the bare steel.  相似文献   

19.
As an effective photocatalyst, PANI/NiFe2O4 nanocomposite was prepared by in situ polymerization of aniline. The physicochemical properties of the composite were characterized by TEM, XRD, FT-IR spectra, UV–vis spectroscopy, XPS and Photoelectrochemical Measurements. Compared with NiFe2O4 and PANI, PANI/NiFe2O4 nanocomposite has a better photocatalytic activity, which exhibited the remarkable property of hydrogen production under visible light. The photocatalytic mechanism was also discussed. The heterojunction of PANI and NiFe2O4 promoted the separation of photogenerated e? and h+ on the surface of PANI/NiFe2O4. Besides, the structure of PANI/NiFe2O4 in the polymerization was detected by FT-IR. NiFe2O4 was proved that in favor of the formation of nucleate phenazine-like structure in the progress of in situ polymerization. Then the chain structure of conductive PANI was formed, which leading to the promotion of photocatalytic activity.  相似文献   

20.
Activity and stability of FeTiO3, MnTiO3, NiFe2O4, CuFe2O4, NiCr2O4, 2CuO·Cr2O3, CuO and Fe2O3 for the atmospheric decomposition of concentrated sulfuric acid in sulfur-based thermochemical water splitting cycles are presented. Catalyst activity was determined at temperatures from 725 to 900 °C. Catalytic stability was examined at 850 °C for up to 1 week of continuous operation. The results were compared to a 1.0 wt% Pt/TiO2 catalyst. Surface area by nitrogen physisorption, X-ray diffraction analyses, and temperature programmed desorption and oxidation were used to characterize fresh and spent catalyst samples.Over the temperature range, the catalyst activity of the complex oxides followed the general trend: 2CuO·Cr2O3 > CuFe2O4 > NiCr2O4  NiFe2O4 > MnTiO3  FeTiO3. At temperatures less than 800 °C, the 1.0 wt% Pt/TiO2 catalyst had higher activity than the complex oxides, but at temperatures above 850 °C, the 2CuO·Cr2O3 and CuFe2O4 samples had the highest activity.Surface area was found to decrease for all of the metal oxides after exposure to reaction conditions. In addition, the two complex metal oxides that contained chromium were not stable in the reaction environment; both leached chromium into the acid stream and decomposed into their individual oxides. The FeTiO3 sample also produced a discoloration of the reactor due to minor leaching and converted to Fe2TiO5. Fe2O3, MnTiO3 and NiFe2O4 were relatively stable in the reaction environment. In addition, CuFe2O4 catalyst appeared relatively promising due to its high activity and lack of any leaching issues; however it deactivated in week-long stability experiments.Complex metal oxides may provide an attractive alternative to platinum-based catalyst for the decomposition of sulfuric acid; however, the materials examined in this study all displayed shortcomings including material sintering, phase changes, low activity at moderated temperatures due to sulfate formation, and decomposition to their individual oxides. More effort is needed in this area to discover metal oxide materials that are less expensive, more active and more stable than platinum catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号