首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
生物质气流床气化制取合成气的试验研究   总被引:3,自引:0,他引:3  
利用一套小型生物质层流气流床气化系统,研究了稻壳、红松、水曲柳和樟木松4种生物质在不同反应温度、氧气/生物质比率(O/B)、水蒸汽/生物质比率(S/B)以及停留时间下对合成气成分、碳转化率、H2/CO以及CO/CO2比率的影响.研究表明4种生物质在常压气流床气化生成合成气最佳O/B范围为0.2~0.3(气化温度.1300℃),高温气化时合成气中CH4含量很低,停留时间为1.6s时其气化反应基本完毕.加大水蒸汽含量可增加H2/CO比率,在S/B为0.8时H2/CO比率都在1以上,但水蒸汽的过多引入会影响煤气产率.气化温度是生物质气流床气化最重要的影响因素之一.  相似文献   

2.
利用化学热力学软件(GasEQ)模拟了生物质蒸汽气化过程中温度、水蒸气与物料质量比(S/M)以及CO2浓度对H2,CH4和CO的影响;研究了冷合成气低位热值(LHV)和气化能量转化效率(q)随各参数变化的规律,并且考虑了外部能量的消耗。模拟研究得到:随着温度的升高,合成气的LHV总体表现出降低,并且q先增加后微弱下降,认为存在一个最优的气化温度(800900℃);高S/M有利于H2的生成,提高H2的体积浓度,但水蒸气的增加,降低了LHV值,并且q先增加后减少,因为水蒸气会消耗大量外部能量,存在一个最经济的气化S/M;随着反应气中CO2浓度的升高,促进了生物质气化,并使CO浓度升高和H2浓度降低。  相似文献   

3.
在常压固定床反应器中进行木屑高温水蒸气气化制取合成气研究。分别在750~1000℃温度和0.32~1.02g/min水蒸气流量下进行实验,反应时间为10 min。主要研究反应温度和水蒸气流量对碳转化率、合成气产率及合成气组分的影响。研究结果表明,木屑水蒸气气化具有很高的反应活性,合成气产率在0.81~1.74 L/g之间;反应温度和水蒸气流量对碳转化率和合成气热值及组分影响显著;在反应温度950℃,水蒸气流量0.67 g/min时,碳转化率达到最高值99.47%;合成气主要由H2、CO、CO2、CH4及少量CnHm组成,其中(H2+CO)比例达到63%~75%,合成气热值在10.5~11.5 MJ/m3之间,H2/CO比在1.0~2.3之间。  相似文献   

4.
为提高生物质的利用效率,提出了生物质化学链气化氢-电-甲醇多联产工艺,采用CaO吸附强化Fe_2O_3生物质化学链气化过程,生产高纯度氢气和适用于甲醇合成的高氢碳比合成气。选用木屑作为生物质,利用Aspen Plus软件进行过程模拟和热力学分析,以合成气的氢碳比(H/C)、系统氢气效率、净电效率、甲醇效率和总效率作为评价指标,讨论了水蒸气与生物质质量比(S/B)、氧载体与生物质质量比(M_(Ca)/B、M_(Fe)/B)和气化压力(p_(CLG))对系统性能的影响。结果表明:在S/B=0.4、M_(Ca)/B=1、M_(Fe)/B=0.5和p_(CLG)=0.8 MPa时,系统性能最优,合成气的H/C为2.09,甲醇效率为41.28%,总效率为59.34%。  相似文献   

5.
试验研究了木屑在水蒸气气氛下的热失重行为及气化过程中合成气释放特性。首先采用TG-DTA对木屑样品进行了水蒸气气氛下的热重行为分析,结果表明,木屑气化过程可以分为挥发分释放和半焦气化两个阶段,分别可由二级反应动力学和三维扩散Ginstling-Broushtein方程描述,对应的表观活化能分别为87.014kJ/mol和103.35 kJ/mol。此外,在自制的固定床气化反应装置上,研究了生物质气化过程中挥发分释放和半焦气化阶段合成气释放特性。另外,半焦水蒸气气化阶段对气体中合成气含量和H2/CO起到决定性作用,通过合理调控半焦气化阶段反应条件,可以得到合适化学当量比的生物质合成气。  相似文献   

6.
为了研究蔗渣与烟煤共气化对气化性能的影响,利用软件ASPEN PLUS对水蒸气为气化剂、蔗渣和烟煤为原料的共气化过程进行了模拟。通过改变C/B(烟煤与蔗渣)比例、S/F(水蒸气与燃料)比例、气化温度来研究合成气体积分数、气化效率、合成气低位热值的变化趋势,从而找到蔗渣与烟煤共气化的最佳工况。结果表明:随着蔗渣增加,低位热值逐渐降低,气化效率先升高后降低;随着气化温度升高,气化效率和低位热值均先升高后变得平缓;随着S/F的增加,气化效率先升高后降低,低位热值在S/F=0.6之后开始下降。提高气化温度、加入适量水蒸气均有利于共气化。当C/B比例为2:1,气化温度为850℃,S/F=0.6时,气化效率为88.05%达到最大,合成气低位热值为11407.34k J/m~3。  相似文献   

7.
基于单一流化床两步气化法,以煤作为热载体和发热体,水蒸气为气化剂,CaO为催化剂,在自行研制的流化床热态装置上对生物质(锯木)气化制备燃气进行了研究。探讨了温度和水蒸气与锯木比对燃气组分和低位热值的影响。在所研究的操作参数范围内,(H2 + CO)含量为67.58% ~ 74.9%,燃气低位热值为10719.09 kJ/Nm3 ~ 12002.44 kJ/Nm3。实验结果表明,含少量N2的中热值燃气可以被获得,H2和CO是燃气中最主要的两种气体。随着温度的升高,燃气中H2和CO含量增加,而CH4和CO2含量及燃气低位热值则呈现下降趋势。随着水蒸气与锯木比的增加,燃气中H2和CO2含量增加,而CH4和CO含量则相应的减小。  相似文献   

8.
气化炉中生物质——煤共同气化的模拟研究   总被引:1,自引:0,他引:1  
在气化炉内采用煤粉和生物质共气化可解决生物质不易稳定流化和生成焦油两大难题,采用流程模拟软件PROⅡ对炉内的气化过程进行了模拟计算,得到了汽氧比和氧碳比和生物质/煤比对气化过程的影响。气化炉内优化的反应条件为:反应温度1350℃,[H2O]/[O2]=0.32,[O][C]=1.05,气化得到的合成气的高位热值Qgr=7150kJ/Nm3,有效气产率为1.59Nm3/kg。  相似文献   

9.
以木屑炭为原料,在固定床反应器中进行了水蒸气气化试验。试验在水蒸气流量为0.854 g/min,温度为800~1 000℃条件下,反应15 min。主要考查气化反应温度对碳转化率、合成气产率、燃气热值及燃气组成的影响。研究结果表明,在高温条件下木屑炭与水蒸气具有很高的反应活性,燃气产率为0.9~3 L/g;在气化温度为1 000℃时,碳转化率最高达到80%;燃气热值为8.9~9.4 MJ/m3,合成气(H2+CO)比例为68%~79%,H2/CO为4.02~6.32。  相似文献   

10.
采用Aspen Plus流程模拟软件对以条浒苔为代表的大型海藻的气化进行数值模拟.研究了海藻气化炉的重要相关参数(即条浒苔含水量、氧气条浒苔比、气化温度、氧气浓度)对气化结果的影响.结果显示:随着条浒苔含水量的增加,合成气的有效成分(H2+CO)总含量减少;当氧气条浒苔比为0.56时,气化温度增大到800℃,合成气中(H2 +CO)的摩尔比例达到最大值;氧气的纯度提高,有利于合成气中有效成分的增加.  相似文献   

11.
The objective of this study is to investigate the impact of biomass feeding location on rice husk gasification for hydrogen production. By comparing the results between top-feed and bottom-feed of the feedstock of the fluidized bed biomass gasification at the reaction temperature between 600~1000 °C and ER = 0.2, 0.27, and 0.33 without steam, the optimum low heating value was increase by 2.35 kJ/g-rice husk by the top-feed to gasifier. Although the yield of hydrogen was decreased by 42% for the rice husk gasification by the top-feed operation, the yield of CO, CO2, and CH4 were highly increased, which enhancing the heating value of the effluent gas. The study results suggested the potential route of the biomass gasification at the different feeding location.  相似文献   

12.
Biomass gasification is an important method to obtain renewable hydrogen. However, this technology still stagnates in a laboratory scale because of its high-energy consumption. In order to get maximum hydrogen yield and decrease energy consumption, this study applies a self-heated downdraft gasifier as the reactor and uses char as the catalyst to study the characteristics of hydrogen production from biomass gasification. Air and oxygen/steam are utilized as the gasifying agents. The experimental results indicate that compared to biomass air gasification, biomass oxygen/steam gasification improves hydrogen yield depending on the volume of downdraft gasifier, and also nearly doubles the heating value of fuel gas. The maximum lower heating value of fuel gas reaches 11.11 MJ/N m3 for biomass oxygen/steam gasification. Over the ranges of operating conditions examined, the maximum hydrogen yield reaches 45.16 g H2/kg biomass. For biomass oxygen/steam gasification, the content of H2 and CO reaches 63.27–72.56%, while the content of H2 and CO gets to 52.19–63.31% for biomass air gasification. The ratio of H2/CO for biomass oxygen/steam gasification reaches 0.70–0.90, which is lower than that of biomass air gasification, 1.06–1.27. The experimental and comparison results prove that biomass oxygen/steam gasification in a downdraft gasifier is an effective, relatively low energy consumption technology for hydrogen-rich gas production.  相似文献   

13.
在单批次进料小型流化床上,以稻壳为生物质燃料,研究了床料、气化温度、水蒸气体积分数以及载氧体载氧量与生物质含碳量的摩尔比(O/C)对生物质化学链气化反应特性的影响,并考察了铁矿石的长期交替氧化还原过程中的反应特性,分析了在小型流化床,水蒸气气氛气化条件下,铁矿石载氧体在反应过程中主要的反应以及反应后的铁矿石的床料变化。研究表明:在载氧体条件下,生物质的碳转化率显著增大,随着反应温度的升高,合成气中的H_2和CO的体积分数也相应升高。在温度不变情况下,随着水蒸气比例的升高,CO_2和H_2的体积分数显著上升。伴随着O/C摩尔比的升高,CO和H_2均显著下降。因此,在不同的反应条件下,铁矿石在生物质化学链气化过程中对反应速度、合成气比例等均有明显的作用,对研究生物质的综合利用具有一定的意义。  相似文献   

14.
以一个常压流化床为反应器,采用膜分离技术制氧,对煤富氧-水蒸气气化制取煤气的特性进行实验研究,通过对试验数据的分析,探讨了两种不同煤种的典型运行结果,分析H2O/C对气化温度、煤气成分及热值影响,以及氧浓度对实验结果的影响。结果表明氧浓度的提高,明显增加了煤气的热值,氧浓度从21%提高到30%时,煤气热值提高了1.18 MJ/m3;在温度为920℃,氧浓度30%,H2O/C比为1,O/C比为0.8,煤气热值达到5.95 MJ/m3。  相似文献   

15.
The depletion of fossil fuels and the increasing environmental problems, make biomass energy a serious alternative resource of energy. Biomass gasification is one of the major biomass utilization technologies to produce high quality gas. In this paper, biomass gasification was performed in a self-designed fluidized bed. The main factors (equivalence ratio, bed temperature, added catalyst, steam) influenced the gasification process were studied in detail. The results showed that the combustible gas content and the heating value increased with the increase of the temperature, while the CO2 content decreased. The combustible gas content decreased with the increase of the equivalence ratio (ER), but CO2 content increased. At the same temperature and at different ratios of CaO (from 0 to 20%), H2 content was increased significantly, CO content was also increased, CH4 content increased slightly, but CO2 content was decreased. With the addition of steam at different temperature, the gas in combustible components increased, the content of H2 increased obviously. The growth rate was 50% increased. As the bed temperature increased, gas reforming reaction increased, the CO and CH4 content decreased, but CO2 and H2 content increased.  相似文献   

16.
A kinetic model of algae gasification for hydrogen production with air and steam as gasification agent and was developed. The developed model was based on kinetic parameters available in the literature. The objective was to study the effect of critical parameters such as reaction temperature, stoichiometric ratio (SR) and steam flow rate (SFR) on H2/CO ratio in the syngas, hydrogen yield, and lower heating value (LHV) of the produced syngas. Model formulation was validated with experimental results on air-steam gasification of biomass conducted in an atmospheric fluidized bed gasifier. The results showed that higher temperature contributed to lower H2/CO, while higher SFR resulted in higher H2/CO. The LHV of producer gas increased with SFR and gasification temperature.  相似文献   

17.
《能源学会志》2020,93(1):25-30
Biomass gasification is an attractive option for producing high-quality syngas (H2+CO) due to its environmental advantages and economic benefits. However, due to some technical problems such as tar formation, biomass gasification has not yet been able to achieve its purpose. The purpose of this work was to study the catalytic activity of coal-bottom ash for fuel gas production and tar elimination. Effect of gasification parameters including reaction temperature (700–900 °C), equivalence ratio, EQR (0.15–0.3) and steam-to-biomass ratio, SBR (0.34–1.02) and catalyst loading (5.0–13 wt %) on gas distribution, lower heating value (LHV) of gas steam, tar content, gas yield and H2/CO ratio was studied. The tar content remarkably decreased from 3.81 g/Nm3 to 0.97 g/Nm3 by increasing char-bottom ash from 5.0 wt% to 13.0 wt%. H2/CO significantly increased from 1.12 to 1.54 as the char-bottom ash content in the fuel increased from 5.0 wt% to 13.0 wt%.  相似文献   

18.
污泥热解残渣水蒸气气化制取富氢燃气   总被引:3,自引:0,他引:3  
采用固定床反应器,进行了污泥热解残渣水蒸气气化制取富氢燃气的研究。考察了反应温度、固相停留时间、水蒸气流量及催化剂对气化效果及气体产物组成的影响。结果表明:随着反应温度的升高,气体产率由0.096 7 m3/kg逐渐增加到0.460 0 m3/kg,燃气中H2含量由17.87%逐渐增加到52.44%;在最佳固相停留时间为15min时,气体产率达到0.540 m3/kg;最佳水蒸气流量为1.19 g/min,此时产气量达到最大值0.61 m3/kg,H2含量为64.7%;添加催化剂有利于气体中H2含量的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号