首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different dimple geometrical configurations with a combination of corrugated tubes and twisted tape are numerically investigated. Water is used as a working fluid for constant heat flux heat transfer conditions at the pipe wall. The dimensionless diameter of the dimples (d/D) used in this study is 0.09, 0.18, 0.27, and 0.36. However, the corrugation configuration diameter is 1 mm. The numerical simulations are carried out at the Reynolds number in the range of 1500–14,000. The outcomes reveal that the friction factor (f) and Nu number are augmented as the dimple diameter increases. The Nu number ratio of 1.25 is found for a dimple pipe tube with a diameter of 4 mm. The numerical outcome presented more mixing, secondary, and vortex produced in the main flow direction and near the pipe wall to the rotating flow induced by twisted tape. Moreover, mixed, secondary vortices and rotational flow originate behind and near the dimple, twisted tape, and corrugation surfaces. These rotational and vortices can promote mixing in flow between the thermal boundary layer and velocity boundary flow layer. So, increase the heat transfer enhancement. The improved pipes with different dimple diameters produce a maximum performance evaluation factor of is more than 1.25.  相似文献   

2.
In the current investigation, the twisted tape inserts are considered as the augmentation thermal technique, the influence of a variety of twisted tape configurations on pressure drop characteristics, temperature differences, thermal performance of fluid flow structure, heat transfer improvement, and friction factor are numerically evaluated. The changed geometrical parameters employed for this study comprise twisted tape width, twisted tape thickness, number of turns, and inward thickness are the input parameters. Design of experiments method is applied to analyze the influence of latter various types of geometrical parameters on hydraulic thermofluid pattern and heat transfer improvement in the twisted tube heat exchanger as the output variables. For the experimental design optimization Taguchi analysis is based on investigate of alterations and performs the orthogonal arrays (OA). Moreover, the OA L16 is chosen as the plan of experimental study. It is found the best design of twisted tape in this study by using computational fluid dynamics numerical methodology complained with Taguchi method the enhancement in heat transfer and hence the overall performance evaluation factor is higher than 1.2.  相似文献   

3.
This work presents an experimental study on the mean Nusselt number, friction factor and enhancement efficiency characteristics in a round tube with short-length twisted tape insert under uniform wall heat flux boundary conditions. In the experiments, measured data are taken at Reynolds numbers in a turbulent region with air as the test fluid. The full-length twisted tape is inserted into the tested tube at a single twist ratio of y/w = 4.0 while the short-length tapes mounted at the entry test section are used at several tape length ratios (LR = ls/lf) of 0.29, 0.43, 0.57 and 1.0 (full-length tape). The short-length tape is introduced as a swirling flow device for generating a strong swirl flow at the tube entry before decaying along the tube. On the other hand, the full-length tape (LR = 1.0) is expected to produce a strongly swirling flow over the whole tube. The variation of heat transfer and pressure loss in the form of Nusselt number (Nu) and friction factor (f) respectively is determined and depicted graphically. The experimental result indicates that the short-length tapes of LR = 0.29, 0.43 and 0.57 perform lower heat transfer and friction factor values than the full-length tape around 14%, 9.5% and 6.7%; and 21%, 15.3% and 10.5%, respectively. In addition, it is apparent that the enhancement efficiency of the tube with the short-length tape insert is found to be lower than that with the full-length one. The mean deviation between measured and correlated values of the Nusselt number is in the order of ± 7% in the range of Reynolds numbers from 4000 to 20,000.  相似文献   

4.
In the present study, the effect of a helical coiled tape on the heat transfer characteristics in a tubular heat exchanger has been studied. Numerical analysis is carried out in a tubular heat exchanger with a helical coiled tape insert under laminar flow conditions. The heat transfer characteristics, like Nusselt number (Nu) and friction factor (f), have been determined. Numerical modeling is undertaken and validated using analytical results. To study the parametric variation, simulation is carried out for different width ratios (WR) and twist ratios (TRs). It is observed that Nu increases as the WR is increased and the TR is reduced. The thermohydraulic performance index (THPI) is measured and found to be higher for a combination of a higher WR and a higher TR. From the tested values, it is seen that for a combination of WR = 3 and TR = 1.25, the maximum THPI was observed. It is concluded that both the tape width and pitch will significantly influence the thermohydraulic characteristics in a tubular heat exchanger with a helical tape insert inserted.  相似文献   

5.
To reduce the heat exchanger's costs in a highly competitive industry, thermal performance enhancement of the heat exchangers has successfully gained attention in the last few decades. Among different engineering approaches, the application of the enhanced pipes provides a key solution to improve heat performance. In this paper, the investigation develops a numerical study based on the commercially available computational fluid dynamics codes on the turbulent flow in three-dimensional tubular pipes. Various concavity (dimple) diameters with corrugation and twisted tape configurations are investigated. The study has shown that perforated geometrical parameters lead to a high fluid mixing and flow perturbation between the pipe core region and the walls, hence better thermal efficiency. Moreover, a model of concavity (dimple) with a 4 mm diameter allows the highest heat transfer enhancement among other designs. In addition, the study shows that due to the disturbance between the pipe core region and the pipe wall, the transverse vortices and swirl flow generated are forceful, which leads to better heat transfer enhancement compared with the conventional (smooth) pipes. As the Reynolds number (Re) rises, the mixing flow, secondary, and separation flow extend to become higher than the values in a smooth pipe, allowing a higher value of performance evaluation factor to be achieved for a dimple diameter of 1mm at the low Re values. This study, therefore, shows the promising potential of the enhanced pipes in the heat transfer enhancement of heat exchangers that is crucial in industrial applications to save more energy.  相似文献   

6.
The rockets engines combustion chamber wall suffers from high single-side heating and small cooling channel size, and this can cause serious cross-section thermal stratification and local heat transfer deterioration problem, leading to the decreasing of the flow and heat transfer efficiency and thermal protection problem. In this paper, to effectively reduce this non-uniform distribution phenomenon to enhance the flow heat transfer capacity, a new vortex generator with combing fin and dimple is proposed. The CFD software is used to numerically solve this problem and analyzed the influence of thermal stratification on hydrogen fuel flow and heat transfer. The investigation results indicate that for Rein = 42000, Nu of new dimple and fin structure improves about 94%, and the maximum heat temperature decreases 15.4% than smooth channel, while the friction factor is about 2.6 times smooth channel. The temperature non-uniform index decreases the 12.24% than smooth channel. Comparing with smooth and dimple structure, the new structure effectively reduced the thermal stratification phenomenon to improve the hydrogen fuel flow and heat transfer performance, thus the overheated structure is better protected.  相似文献   

7.
Introducing passive devices in the form of inserts helps to increase the heat transfer characteristics in a circular pipe. In the present work, the feasibility of using two twisted tapes has been numerically studied under laminar flow conditions. Two twisted tapes with configurations of co‐swirl and counter‐swirl conditions were simulated for Re ranging from 1000 to 2500. Heat transfer characteristics like Nusselt number, friction factor, and thermohydraulic performance index (THPI) were investigated. Even the effect of spacing of the tubes inside the pipe was numerically studied. Results indicated that the insertion of two tapes will improve the performance of the circular tube compared with a single tape in terms of a higher Nu and higher THPI. It is observed that for the co‐swirl condition for a Reynolds number of 1000, Nu and THPI is 38% and 29% higher than using a single tape, whereas, for the counter‐swirl condition, they are 43% and 34% higher than that of the single tape condition. Also, it is revealed that counter swirl positioning of the tape with an L/D ratio 0.56 outperformed all other configurations with the highest THPI.  相似文献   

8.
The article presents the application of a mathematical model for simulation of the swirling flow in a tube induced by loose-fit twisted tape insertion. Effects of the clearance ratio defined as ratio of clearance between the edge of tape and tube wall to tube diameter (CR = c/D = 0.0 (tight-fit), 0.1, 0.2 and 0.3) on heat transfer enhancement (Nu), friction factor (f) and thermal performance factor (η) are numerically investigated for twisted tapes at two different twist ratios (y/w = 2.5 and 5.0). The simulation is conducted in order to gain an understanding of physical behavior of the thermal and fluid flow in the tube fitted with loose-fit twisted tape under constant wall temperature conditions in the turbulent flow regime for the Reynolds number ranging from 3000 to 10,000. The Navier–Stokes equation in common with a energy equation is solved using the SIMPLE technique with the standard kε turbulence model, the Renormalized Group (RNG) kε turbulence model, the standard kω turbulence model, and Shear Stress Transport (SST) kω turbulence model. The numerical results show that the predictions of heat transfer (Nu) and friction factor (f) based on the SST kω turbulence models are in better agreement with Manglik and Bergles [R.M. Manglik, A.E. Bergles, Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes, part II: Transition and turbulent flows, Transaction ASME, Journal of Heat Transfer, 115 (1993) 890–896.] than other turbulence models. The mean flow patterns in a tube with loose-fit twisted tapes in terms of contour plots of velocity, pathline, pressure, temperature and turbulent kinetics energy (TKE) are presented and compared with those in a tube fitted with tight-fit twisted tapes. It is visible that the twisted tape inserts for y/w = 2.5 with CR = 0.0 (tight-fit), 0.1, 0.2 and 0.3 can enhance heat transfer rates up to 73.6%, 46.6%, 17.5% and 20%, respectively and increase friction factors up to 330%, 262%, 189%, and 160%, respectively, in comparison with those of the plain tube. The tube with loose-fit twisted tape inserts with CR = 0.1, 0.2 and 0.3 provide heat transfer enhancement around 15.6%, 33.3% and 31.6% lower than those with CR = 0.0 (the tight-fit twisted tape). The heat transfer augmentation is expected to involve the swirl flow formation between the tape and a tube wall. In addition, the simulation for thermal performance factor (η) of a tube with the loose-fit twisted tape and the tight-fit twisted tape under the same pumping power is also conducted, for comparison.  相似文献   

9.
Using passive devices are an efficient method to enhance streamline behavior when liquid flows through the circular pipe. The interrupted structure groove is usually used to change the flow patterns. In this analysis, a heat performance numerical technique is applied to study the characteristics of fluid flow and heat transfer of the circular pipe using different axial groove geometrical configurations with different axial groove numbers, including 2, 3, and 4, under different conditions. The number of annular grooves and circumferential positions are the important parameters to analyse with varying operating conditions, with the Reynolds number (Re) range from 1500 to 23,000. A three-dimensional coordinate pipe system is applied using tetrahedron grids. The discretization equations are obtained by deriving algebraic approximations to integral conservation equations. Results observed that using this type of passive method has a low effect on pressure dope compared to the normal one (smooth pipe). The flow change occurs near and closed to the axial groove parameters. Moreover, the Nusselt number (Nu) value for the groove turbulators was higher than the normal one, about 14.5%–21%. The friction factor (f) value for the groove turbulators was higher than the normal one, were about 7.5%–24%. Most friction losses are caused by dynamical pressure dissipation owing to more viscous losses closed to the wall surfaces. The improvement of heat performance using this type of passing method was more than 1.2%.  相似文献   

10.
Heat exchangers are extensively used in various industries. In this study, the impact of geometric and flow parameters on the performance of a shell and double helical coil heat exchanger is studied numerically. The investigated geometric parameters include external coil pitch, internal coil pitch, internal coil diameter, and coil diameter. The influences of considered geometrical parameters are analyzed on the output temperature of the hot and cold fluid, convective heat transfer coefficient, pressure drop, and average Nusselt number. Water is considered as working fluid in both shell and tube. As an innovation, double helical coils are used instead of one in the heat exchanger. To compare the obtained results accurately, in each section, the heat transfer area (coil outer surface) is kept constant in all models. The results show that the geometrical parameters of double helical coils significantly affect the heat transfer rate.  相似文献   

11.
A simple mathematical model following the suggestion of Smithberg and Landis has been created to predict the heat transfer coefficients for the case of a fully developed turbulent flow in a spirally corrugated tube combined with a twisted tape insert. The heat transfer can be predicted from the combined effects of the axial and the tangential boundary layer flows coupled with an additional “vortex mixing” effect near the wall through the solution of the corresponding momentun and energy transfer equations. The “wall roughness” has an effect simultaneously on the axial velocity, secondary fluid motion and the resulting swirl mixing. The model reflects the influence of the “wall roughness” and the twisted tape on the thermal resistances of the helicoidal core flow, twisting boundary layer flow and the viscous sublayer near the wall. The calculated heat transfer coefficients have been compared to 544 experimental points obtained from 57 tubes tested. Four hundred thirty-eight points (80.5%) have a relative difference of less than ±15% and 106 points (19.5%) have a relative difference between ±(15-20)%.  相似文献   

12.
Due to the scarcity of conventional energy sources, a lot of efforts need to be taken regarding energy conservation in the buildings, including heat recovery of air ventilation systems. The present paper focuses on new methods to improve the thermal performance of the heat recovery system by investigating the heat transfer characteristics and the flow development in a flat-plate heat exchanger (FPHE) using three different rib-grooved surfaces (trapezoidal, triangle and semi-circular), the numerical simulations were carried out for uniform wall heat flux equal to 290 W/m2 for air as the working fluid, the Reynolds number varies from 500 to 2000 for three different channel heights. The numerical results indicated that, rib-grooved surfaces have a significant impact on heat transfer enhancement with an increase in the pressure drop through the channel. The effect of rib-grooved patterns on the heat transfer and the fluid flow is more significant in a narrow channel especially for trapezoidal and triangle corrugated surfaces, because they have sharp edges. Based on the present research, the FPHEs with the added rib-grooved surfaces are recommended to provide an efficient and compact heat recovery system. Moreover, it was found that by applying the new design, a considerable amount of energy and power could be saved.  相似文献   

13.
能源与材料费用的不断增长推进了高效节能换热器的发展.在管壳式换热器中,为强化管内单相对流换热并有效清除污垢,制造工艺简单、拆装维修方便的管内插入物-扭带被广泛应用.介绍了多种扭带的结构和特点,分析了扭带强化管内单相对流换热的机理.从连续扭带、闻隔扭带、异型扭带、清洗扭带和复合强化技术五个方面,对扭带强化管内单相对流换热...  相似文献   

14.
To meet the requirements of development in heat exchangers design, the effect of different tubes geometrical parameters on its flow field analysis and thermal heat transfer performance are investigated in the current research work. The hydraulic thermal fluid coupling with computational simulations is applied. The numerical results are solving used flow transport and heat transfer equations, then these results are validated with available experimental data. The behavior of hydraulic and thermal flow in the corrugated tube is discussed with different geometrical parameters' position and shape. Turbulent flow in the tube is calculated in three-dimensional numerical simulations with optimization of a multiobjective algorithm are analyzed. The influences of various design parameters, for instance, the number of corrugated rings around the tube, distance between each corrugated ring, the diameter of the ring, and pitch of ring are investigated firstly in the flow field and then optimized by using the design of experiment (DOE). The influence of flow structural modifications such as static pressure, dynamic pressure, and pressure drop is taken into consideration as analyzed performance parameters. The DOE method is investigated based on implements and variances the L16 orthogonal arrays are chosen as the experimental strategy. Furthermore, the optimization results found that the maximum value of pressure difference was for corrugated diameter. The numerical method using DOE has enhanced heat transfer rate as compared to the smooth pipe. Moreover, the minimum Tout is for Case 11 (296.49°C) and the maximum Tout is for (303.10°C) hence the value of Nu number for both cases is 32.9 and 42, respectively. That means using this type of passive device can improve the heat transfer in the pipe. The outcomes illustrate that the performance evaluation factor (PEF) ratio of the corrugated pipe with different geometrical configurations is changed and increased as the corrugated pipe geometrically changed and the value of PEF is more than 1.3.  相似文献   

15.
In this paper, the effects of dual twisted tape inserts with different pitches on turbulent heat transfer and pressure drop are numerically investigated. A nanofluid is flowed inside a circular tube, which is under a constant heat flux condition. The Reynolds number varies from 5000 to 20 000 at a fixed Prandtl number of 7. Nine different cases are considered in the current study; three cases consist of a single twisted tape insert, three cases are related to twin twisted tapes with identical pitches, and the remaining cases consist of dual twisted tapes with different pitches for each insert. The predicted results indicate that inserting a dual twisted tape effectively increases the heat transfer 1.5 times more than that of the single insert with the penalty of high pressure drop. Also, the relative Nusselt number decreases with increase in Reynolds number for all the investigated cases. The heat transfer rates induced by dual inserts with different pitch ratios are higher than those with identical pitch ratios. Moreover, the maximum and minimum thermal performances belong to cases with Tr 1 = 2, Tr 2 = 3 and Tr 1 = 2, Tr 2 = 2, respectively. And finally, it is stated here that adding nanoparticles improves the thermal performance of all cases in all the investigated Reynolds numbers.  相似文献   

16.
建立了考虑泵热空间到环境热源的热漏、工质循环的内部不可逆性以及工质与热源之间传热Q∝△(T^a)服从传热规律时的不可逆四热源吸收式热泵循环模型,导出了循环泵热率和泵热系数的一般关系;并导出了线性唯象传热定律时循环泵热率和泵热系数的基本优化关系、性能极值、循环中工质的最佳工作温度和换热器传热面积的最佳分配关系;通过数值耸例分析了传热规律、热漏和内不可逆性对循环性能的影响规律,比较了传热面积最优分配前后循环的最优性能。  相似文献   

17.
Influence of helical tapes inserted in a tube on heat transfer enhancement is studied experimentally. A helical tape is inserted in the tube with a view to generating swirl flow that helps to increase the heat transfer rate of the tube. The flow rate of the tube is considered in a range of Reynolds number between 2300 and 8800. The swirling flow devices consisting of: (1) the full-length helical tape with or without a centered-rod, and (2) the regularly-spaced helical tape, are inserted in the inner tube of a concentric tube heat exchanger. Hot air is passed through the inner tube whereas cold water is flowed in the annulus. The experimental data obtained are compared with those obtained from plain tubes of published data. Experimental results confirmed that the use of helical tapes leads to a higher heat transfer rate over the plain tube. The full-length helical tape with rod provides the highest heat transfer rate about 10% better than that without rod but it increased the pressure drop. To overcome this, different free-spacing ratio (s = Ls/Lh) of 0.5, 1.0, 1.5, and 2.0 were examined. It was found that the space ratio value should be about unity for Re < 4000. The regularly-spaced helical tape inserts at s = 0.5 yields the highest Nusselt number which is about 50% above the plain tube.  相似文献   

18.
The heat transfer enhancement performance of a phase change buried tubes thermal storage system is influenced by major parameters such as arrangement of heat transfer tubes, fin structure and fin geometry size. We developed a three-dimensional numerical model with two different arrangements and five different enhanced heat transfer structures respectively. For the sake of analysis the effects of arrangement of heat transfer tubes, fin structure and fin geometry size. In addition, we applied the enthalpy-transforming model to obtain the liquid fraction and location of the solid-liquid interface at different time in the phase change process. The numerical results show that the melting time of the thermal storage system model with a triangle arrangement is about 6.1% longer than that of the model with a square arrangement. Besides, the melting time of the model with 55 mm tube pitch is about 16.7% shorter than that of tube pitch with 60 mm. Moreover, the buried tube thermal storage system models with circle fins have the shortest melting time, which is 18 seconds. Melting time of the model with circle fins is about 40% shorter than that of the model with smooth tube. In addition, the melting time of the model with 3 mm fin thickness is 10 seconds, which is the shortest. The model with thicker fins means the shorter time of melting process. Moreover, the melting time of the model with 10.5 mm fin spacing is about 23.5% shorter than that of the model with 12.5 mm fin spacing, which is 13 seconds. In conclusion, the main factor of the melting time is the heat transfer area. It provides a guidance for the design and reconstruction of the type of heat storage structure.  相似文献   

19.
The effect of V-cut twisted tape insert on heat transfer, friction factor and thermal performance factor characteristics in a circular tube were investigated for three twist ratios (y = 2.0, 4.4 and 6.0) and three different combinations of depth and width ratios (DR = 0.34 and WR = 0.43, DR = 0.34 and WR = 0.34, DR = 0.43 and WR = 0.34). The obtained results show that the mean Nusselt number and the mean friction factor in the tube with V-cut twisted tape (VTT) increase with decreasing twist ratios (y), width ratios (WR) and increasing depth ratios (DR). Subsequently an empirical correlation also was formulated to match with experimental results with ± 6% variation for the Nusselt number and ± 10% for the friction factor.  相似文献   

20.
This study presents, a numerical investigation of two‐dimensional turbulent nanofluids flow in different ribs tube configurations on heat transfer, friction, and thermal performance coefficients using ANSYS‐FLUENT software version‐16. Governing equations of mass, momentum, and energy have been solved by means of a finite volume method (FVM). Four types of nanoparticles namely; Al2O3, CuO, SiO2, and ZnO with volume fraction range (1%‐4%) and different size of nanoparticles (dp = 30 nm, 40 nm, 50 nm, and 60 nm) with various Reynolds number (10 000‐30 000) in a constant heat flux tube with rectangular, triangular, and trapezoidal ribs were conducted for simulation. The results exhibit that Nusselt number for all cases enhanced with Reynolds number and nanofluid volume fraction increases. Likewise, the results also reveal that SiO2 with volume fractions of 4% and diameters of nanoparticles of 30 nm in triangular ribs offered the highest Nusselt number at Reynolds number of Re = 30 000. In addition, the higher value of thermal performance factor was obtained at Reynolds number of Re = 10 000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号