首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, an external melt ice‐on‐coil thermal storage was studied and tested over various inlet conditions of secondary fluid—glycol solution—flow rate and temperature in charging process. Experiments were conducted to investigate the effect of inlet conditions of secondary fluid and validate the numerical model predictions on ice‐on‐coil thermal energy storage system. The total thermal storage energy and the heat transfer rate in the system were investigated in the range of 10 l min ?1?V??60 l min ?1. A new numerical model based on temperature transforming method for phase change material (PCM) described by Faghri was developed to solve the problem of the system consisting of governing equations for the heat transfer fluid, pipe wall and PCM. Numerical simulations were performed to investigate the effect of working conditions of secondary fluid and these were compared with the experimental results. The numerical results verified with experimental investigation show that the stored energy rises with increasing flow rate a decreasing tendency. It is also observed that the inlet temperature of the fluid has more influence on energy storage quantity than flow rate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A latent heat thermal energy storage system using a phase change material (PCM) is an efficient way of storing or releasing a large amount of heat during melting or solidification. It has been determined that the shell‐and‐tube type heat exchanger is the most promising device as a latent heat system that requires high efficiency for a minimum volume. In this type of heat exchanger, the PCM fills the annular shell space around the finned tube while the heat transfer fluid flows within the tube. One of the methods used for increasing the rate of energy storage is to increase the heat transfer surface area by employing finned surfaces. In this study, energy storage by phase change around a radially finned tube is investigated numerically and experimentally. The solution of the system consists of the solving governing equations for the heat transfer fluid (HTF), pipe wall and phase change material. Numerical simulations are performed to investigate the effect of several fin parameters (fin spacing and fin diameter) and flow parameter (Re number and inlet temperature of HTF) and compare with experimental results. The effect of each variable on energy storage and amount of solidification are presented graphically. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The characteristic variation of the rate of heat transfer to and from a latent heat thermal energy storage capsule was investigated analytically and experimentally. Basic experiments were carried out to simulate a solar energy storage capsule, using a horizontal cylindrical capsule (300 mm length, 40 mm o.d.) filled with naphthalene as the phase change material. The variation of heat flux during the processes of heat storage and removal was measured by a heat flow meter wrapped around the capsule, as the capsule was subjected to stepwise variations of the surface temperature. Finite difference calculations based on heat conduction were also carried out to compare with the experimental results. For the heat removal process, the experimental results and the calculated heat flux agreed well with each other. They showed different characteristic trends for the heat storage process, due to the effects of natural convection.  相似文献   

4.
Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.  相似文献   

5.
The thermal response of a multi-tank thermal storage was studied under variable charge conditions. Tests were conducted on an experimental apparatus that simulated the thermal charging of the storage system by a solar collector over predetermined (prescribed) daylong periods. The storage was assembled from three standard 270 L hot-water storage tanks each charged through coupled, side-arm, natural convection heat exchangers which were connected in either a series- or parallel-flow configuration. Both energy storage rates and tank temperature profiles were experimentally measured during charge periods representative of two consecutive clear days or combinations of a clear and overcast day. During this time, no draw-offs were conducted. Of particular interest was the effect of rising and falling charge-loop temperatures and collector-loop flow rate on storage tank stratification levels. Results of this study show that the series-connected thermal storage reached high levels of temperature stratification in the storage tanks during periods of rising charge temperatures and also limited destratification during periods of falling charge temperature. This feature is a consequence of the series-connected configuration that allowed sequential stratification to occur in the component tanks and energy to be distributed according to temperature level. This effect was not observed in the parallel charge configuration. A further aspect of the study investigated the effect of increasing charge-loop flow rate on the temperature distribution within the series-connected storage and showed that, at high flow rates, the temperature distributions were found to be similar to those obtained during parallel charging. A disadvantage of both the high-flow series-connected and parallel-connected multi-tank storage is that falling charge-loop temperatures, which normally occur in the afternoon, tend to mix and destratify the storage tanks.  相似文献   

6.

Thermal energy storage performance of fatty acids and a eutectic mixture as phase change materials (PCMs) has been investigated experimentally. The selected PCMs for this study were palmitic acid, myristic acid, stearic acid, and a mixture of stearic and myristic acids in eutectic combination ratio of 65.7 wt% myristic acid and 34.3 wt% stearic acid. The PCMs have a melting temperature range of 50.0°C to 61.20°C and a latent heat range of 162.0 J/g to 204.5 J/g. The inlet temperature and the mass flow rate of heat transfer fluid (HTF) were selected as experimental parameters to test the thermal energy storage performance of the PCMs. The transition times, temperature range, propagation of the solid-liquid interface, as well as heat flow rate characteristics of the employed cylindrical tube storage system were studied at varied experimental parameters. The experimental results show that the melting front moves to inward in the radial directions as well as in the axial directions from the top toward to the bottom of the PCM tube. It was observed that the convection heat transfer in the liquid phase plays an important role in the melting process. The changes in the studied HTF parameters have more effect on the melting processes than the solidification processes of the PCMs. The average heat storage efficiency calculated from data for all the PCMs is 51.5%, meaning that 48.5% of the heat actually was lost somewhere.  相似文献   

7.
螺旋盘管式相变储热单元储热性能   总被引:4,自引:0,他引:4  
以石蜡作为相变材料,制作了内通流体螺旋盘管结构的相变储热单元。在对储热单元储热过程进行传热分析的基础上,利用实验手段对储热单元在不同工况下的储热性能进行了研究。通过对其储热过程中相变材料相变过程的分析,提出储热器设计的优化方案。利用实验数据得到其准则关联式,为其在工程中的应用提供了依据。  相似文献   

8.
The flow and heat transport phenomena developing in a real-scale, underground hot-water storage tank intended for central solar systems and made of concrete walls are studied numerically and experimentally. The cubic tank with a volume of 8 m3 has been equipped with two linear diffusers extending over its entire width. For the numerical computations, charging of the tank at a constant flow rate and three different inlet-temperature histories was considered. One of these corresponded to a simple constant value, a second one to solar-collector heating and the third one to electric heating. In the last case experimental data were also obtained. The charging process was simulated by dynamic models based on the multinode and plug-flow approaches, as well as two-dimensional (2D) computational fluid dynamics (CFD), for which both low-Rek-? and two-layer turbulence models were used.The distinct features of the flow and temperature fields for each charging mode as obtained from the models have been analyzed and compared to each other. For the electric heating case, preliminary comparisons between models and experiments were made, showing good qualitative agreement, while quantitative agreement was achieved only for parts of the entire transient process. The effects of turbulence-model choice and water-surface heat losses were also demonstrated and found to be important factors in the modeling procedure.  相似文献   

9.
As one of the most promising thermochemical energy storage medium, research on the Ca(OH)2/CaO system provides an important way of understanding energy storage/release rates of the entire energy storage system. In this paper, a high‐precision thermogravimetric analysis is adopted to investigate thermal decomposition processes of the Ca(OH)2 samples in pure N2 atmosphere at different heating rates. The results demonstrate that during the thermal decomposition process, two weight loss processes respectively occur during 623.15 ~ 773.15 and 873.15 ~ 973.15 K, and the weight loss rates are close to 21% and 2% severally. Multi‐heating rate methods are applied to the study of thermal decomposition dynamics. Findings show that the obtained kinetic parameters are related to reaction conversion, heating rate, and the chosen model‐methods. To further understand the decomposition mechanism of Ca(OH)2, differential method, integral method, and multiple scanning method are used to deal with the experimental data. Through the most probable mechanism function analysis, under certain experimental conditions, thermal decomposition kinetics model of Ca(OH)2 accords well with the shrinking cylinder mechanism. These conclusions provide theoretical bases for applying the Ca(OH)2/CaO system to the thermochemical energy storage field. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This paper is concerned with an experimental investigation into the dynamic behaviour of single spherical thermal (ice) storage elements. Three glass spheres having radii of 4.07, 3.5 and 3.135 cm were chosen for this study. A flowing water–glycol solution over a range of temperature varying between 4.5 and 12°C (during melting) and between ?9.5 and ?4.4°C (during freezing) was used as a heat transfer fluid (HTF) during the tests. The apparatus, method and results are described. Photographic means were used to characterize the water–ice interface position and its shape during discharging (melting) process. However, during charging (freezing) process a new method was devised for the same objectives. Several interesting results have been obtained from this study. Results obtained showed that the charging and discharging rates were constant with respect to the dimensionless time to at least 90% of the storage capacity of the single spherical ice storage element. These important and new results have allowed the formulation, described in the paper, of simple empirical equations describing the charging and discharging rates for a single spherical thermal (ice) storage element at any instant time period within the range of HTF temperature and spherical element size used. It is believed that these equations will be useful to colleagues interested in modelling the dynamic behaviour of thermal (ice) storage using spherical elements as phase change. Effects of the HTF temperature and capsule size on the rate of energy charged and discharged from a single spherical enclosure are presented and discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Long Jian-you 《Solar Energy》2008,82(11):977-985
This paper addresses a numerical and experimental investigation of a thermal energy storage unit involving phase change process dominated by heat conduction. The thermal energy storage unit involves a triplex concentric tube with phase change material (PCM) filling in the middle channel, with hot heat transfer fluid (HHTF) flowing outer channel during charging process and cold heat transfer fluid (CHTF) flowing inner channel during discharging process. A simple numerical method according to conversation of energy, called temperature & thermal resistance iteration method has been developed for the analysis of PCM solidification and melting in the triplex concentric tube. To test the physical validity of the numerical results, an experimental apparatus has been designed and built by which the effect of the inlet temperature and the flow rate of heat transfer fluid (HTF, including HHTF and CHTF) on the thermal energy storage has been studied. Comparison between the numerical predictions and the experimental data shows good agreement. Graphical results including fluid temperature and interface of solid and liquid phase of PCM versus time and axial position, time-wise variation of energy stored/released by the system were presented and discussed.  相似文献   

12.
建立相变蓄热胶囊的三维有序及无序堆积模型,在此基础上分析相变蓄热胶囊有序及无序对蓄热系统特性的影响。通过对蓄热系统的蓄热量、蓄热用时、蓄热效率及系统内温度分布等关键性能指标情况分析,提出一种判定蓄热终点的新方法。结果表明:当采用有序堆积时系统的各项性能指标最优,叉排堆积时蓄热效率最低,而无序堆积时蓄热总量最少。另外,换热流体流速增加可加快蓄热过程,但此时蓄热系统蓄热效率较低。  相似文献   

13.
The adsorption performance of the thermal energy storage (TES) system changes depending on the material properties of the adsorbent itself, but the change of the hardware structure can also substantially change the adsorption characteristics. In this study, a laboratory‐scale adsorption‐based TES system was constructed, and the adsorption performance of three adsorbents was evaluated in the same system to compare the adsorption performance between adsorbents. The adsorption characteristics of silica gel, zeolite 13X, and 4A, which are the most preferred adsorbents in the physical adsorption‐based TES system, were selected for evaluation. Experiments with each adsorbent were performed, including heat recovery to evaluate the heat transfer effect and the amount of heat recoverable in the actual TES system. Experimental results have identified several key characteristics of the adsorption and performance of each adsorbent in the TES system, as well as operating parameters that determine the influence of adsorption performance on the TES system. The actual energy storage density of the adsorbent is affected not only by the enthalpy of adsorption of the material itself but also by other factors. These factors include the difference in thermal conductivity that causes a difference in temperature distribution and the magnitude of mass transfer resistance due to the shape of the adsorbent particle and the actual TES system reactor structure. If the reaction heat generated during the adsorption reaction cannot be effectively released, the adsorption performance is significantly lowered due to the increased temperature of the reactor inside. This phenomenon was commonly observed in adsorbents examined in the present study. The uptake amount, X [g/g], was increased by allowing the inside of the reactor to be maintained at a lower temperature through heat recovery. In case of silica gel, the temperature rise during adsorption reaction is not high due to the difference of isotherm characteristics compared with zeolites, but it is possible to absorb more amount of adsorbate and to recover heat for a longer time. The energy storage density is affected by the temperature increase effect and the uptake amount of adsorbate during the adsorption reaction. The experimental results show that the energy storage density of zeolite 13X is 15% and 28.7% higher than that of silica gel and 4A, respectively, and the temperature rise due to heat generation during adsorption reaction is also high, which is advantageous in adsorption TES system performance.  相似文献   

14.
A numerical and experimental investigation of phase change process dominated by heat conduction in a thermal storage unit is presented in this paper. The thermal energy storage involves a shell and tube arrangement where paraffin wax as phase change material (PCM) is filled in the shell. Water as heat transfer fluid (HTF) is passed inside the tube for both charging and discharging cycles. According to the conservation of energy, a simple numerical method called alternative iteration between thermal resistance and temperature has been developed for the analysis of heat transfer between the PCM and HTF during charging and discharging cycles. Experimental arrangement has been designed and built to examine the physical validity of the numerical results. Comparison between the numerical predictions and the experimental data shows a good agreement. A detailed parametric study is also carried out for various flow parameters and system dimensions such as different mass flow rates, inlet temperatures of HTF, tube thicknesses and radii. Numerical study reveals that the contribution of the inlet temperature of HTF has much influence than mass flow rate in terms of storage operating time and HTF outlet temperature. Tube radius is a more important parameter than thickness for better heat transfer between HTF and PCM.  相似文献   

15.
An energy storage system that stores energy in the form of liquid air was studied. In this system, the cool storage unit was the most important unit. From the viewpoint of safety and economy, it was most promising to store the cold energy as the sensitive heat of a solid such as pebbles or concrete. A simulator was developed to predict temperature variations of the solid cool storage unit. The simulator calculated unsteady heat transfer between a supercritical gas flow and the solid material. Comparison of calculated and experimental results showed that the temperature variation of the metal cool storage medium was accurate within 11%. The calculated results showed for the concrete cool storage unit that a smaller quantity of medium was required with a smaller pitch of the tube. The minimum quantity of concrete calculated at the smallest pitch was three times that of concrete, which was simply estimated from the heat capacity of concrete and air. The volume required for concrete cool storage was less than 1/100 that of reservoirs for a pumped‐hydro power station having a vertical drop of 500 m. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(4): 284–296, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10035  相似文献   

16.
针对传统生物质墙体存在集热蓄热差的热工问题,提出一种以太阳能为热源的集成管道生物质蓄热墙体,通过建立对比实验模型,分别测试墙体系统及室内物理环境参数,研究2种模型存在的热效率差异,并对实验组墙体系统进行供热性能分析。结果表明:所提出的集成管道生物质墙体系统具有良好的集热、蓄热性能;管道流系统循环控制策略应适应当地气象条件以优化系统供热效率;集成管道生物质蓄热墙节能率可达79.3%,经济效益明显,在生物质能与太阳能富集地区具有广泛应用前景。  相似文献   

17.
相变微胶囊(microencapsulated phase change material,MPCM)在建筑节能领域应用广泛,为研究其传热特性,搭建了以水为换热流体(heat transfer fluid,HTF),微胶囊悬浮液为储能介质的潜热储能(latent thermal energy storage,LTES)系统。在实验过程中,通过改变换热流体的进口初始温度以及搅拌器的搅拌速率,获得了MPCM悬浮液的温度变化规律并计算了MPCM悬浮液的平均充放冷速率。实验结果表明:在充冷过程中,MPCM相变时温度变化速率减缓,相变温度区间较大,而在放冷过程中,MPCM相变时温度保持恒定,相变温度区间较小;未搅拌时,MPCM悬浮液中温度梯度较大,传热能力较差;搅拌时,MPCM悬浮液混合均匀,其温度梯度很小,传热能力较强;增加搅拌器的搅拌速率及水与相变微胶囊悬浮液的温差均可以提高MPCM的充放冷速率。  相似文献   

18.
This paper presents a theoretical analysis and an experimental test on a shell‐and‐tube latent heat storage exchanger. The heat exchanger is used to recover high‐temperature waste heat from industrial furnaces and off‐peak electricity. It can also be integrated into a renewable energy system as an energy storage component. A mathematical model describing the unsteady freezing problem coupled with forced convection is solved numerically to predict the performance of the heat exchanger. It provides the basis for an optimum design of the heat exchanger. The experimental study on the heat exchanger is carried out under various operating conditions. Effects of various parameters, such as the inlet temperature, the mass flow rate, the thickness of the phase‐change material and the length of the pipes, on the heat transfer performance of the unit are discussed combined with theoretical prediction. The criterion for analyzing and evaluating the performance of heat exchanger is also proposed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, a feed-forward back-propagation artificial neural network (ANN) algorithm is proposed for heat transfer analysis of phase change process in a finned-tube, latent heat thermal energy storage system. Heat storage through phase change material (PCM) around the finned tube is experimentally studied. A numerical study is performed to investigate the effect of fin and flow parameter by the solving governing equations for the heat transfer fluid, pipe wall and phase change material. Learning process is applied to correlate the total heat stored in different fin types of tubes, various Reynolds numbers and different inlet temperatures. A number of hidden numbers of ANN are trained for the best output prediction of the heat storage. The predicted total heat storage values obtained by an ANN model with extensive sets of non-training experimental data are then compared with experimental measurements and numerical results. The trained ANN model with an absolute mean relative error of 5.58% shows good performance to predict the total amount of heat stored. The ANN results are found to be more accurate than the numerical model results. The present study using ANN approach for heat transfer analysis in phase change heat storage process appears to be significant for practical thermal energy storage applications.  相似文献   

20.
等温压缩空气储能(I CAES)无需补燃、能源利用率高且碳排放低,在大规模储能领域具有重要应用前景。在建立喷雾的I CAES系统的液气传热模型基础上,通过数值方法分析了喷雾流量对I CAES液气传热特性的影响规律。结果表明:采用喷雾方法能够有效抑制压缩和膨胀过程的温度变化、强化液气传热并实现理想I CAES过程;增大喷雾流量能够降低压缩功耗、提高膨胀做功并降低停机储气过程压损,可提高系统指示效率和储能效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号