首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermal behaviors and stability of glass/glass–ceramic-based sealant materials are critical issues for high temperature solid oxide fuel/electrolyzer cells. To understand the thermophysical properties and devitrification behavior of SrO–La2O3–Al2O3–B2O3–SiO2 system, glasses were synthesized by quenching (25 − X)SrO–20La2O3–(7 + X)Al2O3–40B2O3–8SiO2 oxides, where X was varied from 0.0 mol% to 10.0 mol% at 2.5 mol% interval. Thermal properties were characterized by dilatometry and differential scanning calorimetry (DSC). Microstructural studies were performed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). All the compositions have a glass transition temperature greater than 620 °C and a crystallization temperature greater than 826 °C. Also, all the glasses have a coefficient of thermal expansion (CTE) between 9.0 × 10−6 K−1 and 14.5 × 106 K−1 after the first thermal cycle. La2O3 and B2O3 contribute to glass devitrification by forming crystalline LaBO3. Al2O3 stabilizes the glasses by suppressing devitrification. Significant improvement in devitrification resistance is observed as X increases from 0.0 mol% to 10.0 mol%.  相似文献   

2.
Laminar burning velocities of CO–H2–CO2–O2 flames were measured by using the outwardly spherical propagating flame method. The effect of large fraction of hydrogen and CO2 on flame radiation, chemical reaction, and intrinsic flame instability were investigated. Results show that the laminar burning velocities of CO–H2–CO2–O2 mixtures increase with the increase of hydrogen fraction and decrease with the increase of CO2 fraction. The effect of hydrogen fraction on laminar burning velocity is weakened with the increase of CO2 fraction. The Davis et al. syngas mechanism can be used to calculate the syngas oxyfuel combustion at low hydrogen and CO2 fraction but needs to be revised and validated by additional experimental data for the high hydrogen and CO2 fraction. The radiation of syngas oxyfuel flame is much stronger than that of syngas–air and hydrocarbons–air flame due to the existence of large amount of CO2 in the flame. The CO2 acts as an inhibitor in the reaction process of syngas oxyfuel combustion due to the competition of the reactions of H + O2 = O + OH, CO + OH = CO2 + H and H + O2(+M) = HO2(+M) on H radical. Flame cellular structure is promoted with the increase of hydrogen fraction and is suppressed with the increase of CO2 fraction due to the combination effect of hydrodynamic and thermal-diffusive instability.  相似文献   

3.
4.
On the basis of extreme similarity between the triangle phase diagrams of LiNiO2–LiTiO2–Li[Li1/3Ti2/3]O2 and LiNiO2–LiMnO2–Li[Li1/3Mn2/3]O2, new Li–Ni–Ti–O series with a nominal composition of Li1+z/3Ni1/2−z/2Ti1/2+z/6O2 (0 ≤ z ≤ 0.5) was designed and attempted to prepare via a spray-drying method. XRD identified that new Li–Ni–Ti–O compounds had cubic rocksalt structure, in which Li, Ni and Ti were evenly distributed on the octahedral sites in cubic closely packed lattice of oxygen ions. They can be considered as the solid solution between cubic LiNi1/2Ti1/2O2 and Li[Li1/3Ti2/3]O2 (high temperature form). Charge–discharge tests showed that Li–Ni–Ti–O compounds with appropriate compositions could display a considerable capacity (more than 80 mAh g−1 for 0.2 ≤ z ≤ 0.27) at room temperature in the voltage range of 4.5–2.5 V and good electrochemical properties within respect to capacity (more than 150 mAh g−1 for 0 ≤ z ≤ 0.27), cycleability and rate capability at an elevated temperature of 50 °C. These suggest that the disordered cubic structure in some cases may function as a good host structure for intercalation/deintercalation of Li+. A preliminary electrochemical comparison between Li1+z/3Ni1/2−z/2Ti1/2+z/6O2 (0 ≤ z ≤ 0.5) and Li6/5Ni2/5Ti2/5O2 indicated that charge–discharge mechanism based on Ni redox at the voltage of >3.0 V behaved somewhat differently, that is, Ni could be reduced to +2 in Li1+z/3Ni1/2−z/2Ti1/2+z/6O2 while +3 in Li6/5Ni2/5Ti2/5O2. Reduction of Ti4+ at a plateau of around 2.3 V could be clearly detected in Li1+z/3Ni1/2−z/2Ti1/2+z/6O2 with 0.27 ≤ z ≤ 0.5 at 50 °C after a deep charge associated with charge compensation from oxygen ion during initial cycle.  相似文献   

5.
Global warming due to CO2 emissions has led to the projection of hydrogen as an important fuel for future. A lot of research has been going on to design combustion appliances for hydrogen as fuel. This has necessitated fundamental research on combustion characteristics of hydrogen fuel. In this work, a combination of experiments and computational simulations was employed to study the effects of diluents (CO2, N2, and Ar) on the laminar burning velocity of premixed hydrogen/oxygen flames using the heat flux method. The experiments were conducted to measure laminar burning velocity for a range of equivalence ratios at atmospheric pressure and temperature (300 K) with reactant mixtures containing varying concentrations of CO2, N2, and Ar as diluents. Measured burning velocities were compared with computed results obtained from one-dimensional laminar premixed flame code PREMIX with detailed chemical kinetics and good agreement was obtained. The effectiveness of diluents in reduction of laminar burning velocity for a given diluent concentration is in the increasing order of argon, nitrogen, carbon dioxide. This may be due to increased capabilities either to quench the reaction zone by increased specific heat or due to reduced transport rates. The lean and stoichiometric H2/O2/CO2 flames with 65% CO2 dilution exhibited cellular flame structures. Detailed three-dimensional simulation was performed to understand lean H2/O2/CO2 cellular flame structure and cell count from computed flame matched well with the experimental cellular flame.  相似文献   

6.
In situ Raman spectroscopy was used to monitor the dehydrogenation of ball-milled mixtures of LiNH2–LiBH4–MgH2 nanoparticles. The as-milled powders were found to contain a mixture of Li4BN3H10 and Mg(NH2)2, with no evidence of residual LiNH2 or LiBH4. It was observed that the dehydrogenation of both of Li4BN3H10 and Mg(NH2)2 begins at 353 K. The Mg(NH2)2 was completely consumed by 415 K, while Li4BN3H10 persisted and continued to release hydrogen up to 453 K. At higher temperatures Li4BN3H10 melts and reacts with MgH2 to form Li2Mg(NH)2 and hydrogen gas. Cycling studies of the ball-milled mixture at 423 K and 8 MPa (80 bar) found that during rehydrogenation of Li4BN3H10 Raman spectral modes reappear, indicating partial reversal of the Li4BN3H10 to Li2Mg(NH)2 transformation.  相似文献   

7.
In this article, we investigate the ternary LiNH2–MgH2–LiBH4 hydrogen storage system by adopting various processing reaction pathways. The stoichiometric ratio of LiNH2:MgH2:LiBH4 is kept constant with a 2:1:1 molar ratio. All samples are prepared using solid-state mechano-chemical synthesis with a constant rotational speed, but with varying milling duration. Furthermore, the order of addition of parent compounds as well as the crystallite size of MgH2 are varied before milling. All samples are intimate mixtures of Li–B–N–H quaternary hydride phase with MgH2, as evidenced by XRD and FTIR measurements. It is found that the samples with MgH2 crystallite sizes of approximately 10 nm exhibit lower initial hydrogen release at a temperature of 150 °C. Furthermore, it is observed that the crystallite size of Li–B–N–H has a significant effect on the amount of hydrogen release with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160 °C and the other around 300 °C. The main hydrogen release temperature is reduced from 310 °C to 270 °C, while hydrogen is first reversibly released at temperatures as low as 150 °C with a total hydrogen capacity of ∼6 wt.%. Detailed thermal, capacity, structural and microstructural properties are discussed and correlated with the activation energies of these materials.  相似文献   

8.
9.
Ni–Ce0.8Zr0.2O2 and Ni–MgO–Ce0.8Zr0.2O2 catalysts were investigated for H2 production from CO2 reforming of CH4 reaction at a very high gas hourly space velocity of 480,000 h−1. Ni–MgO–Ce0.8Zr0.2O2 exhibited higher catalytic activity and stability (CH4 conversion >95% at 800 °C for 200 h). The outstanding catalytic performance is mainly due to the basic nature of MgO and an intimate interaction between Ni and MgO.  相似文献   

10.
Oxidative steam reforming of ethanol at low oxygen to ethanol ratios was investigated over nickel catalysts on Al2O3 supports that were either unpromoted or promoted with CeO2, ZrO2 and CeO2–ZrO2. The promoted catalysts showed greater activity and a higher hydrogen yield than the unpromoted catalyst. The characterization of the Ni-based catalysts promoted with CeO2 and/or ZrO2 showed that the variations induced in the Al2O3 by the addition of CeO2 and/or ZrO2 alter the catalyst's properties by enhancing Ni dispersion and reducing Ni particle size. The promoters, especially CeO2–ZrO2, improved catalytic activity by increasing the H2 yield and the CO2/CO and the H2/CO values while decreasing coke formation. This results from the addition of ZrO2 into CeO2. This promoter highlights the advantages of oxygen storage capacity and of mobile oxygen vacancies that increase the number of surface oxygen species. The addition of oxygen facilitates the reaction by regenerating the surface oxygenation of the promoters and by oxidizing surface carbon species and carbon-containing products.  相似文献   

11.
Ni (2.5 wt%) and Co (2.5 wt%) supported over ZrO2/Al2O3 were prepared by following a hydrolytic co-precipitation method. The synthesized catalysts were further promoted by Rh incorporation (0.01–1.00 wt%) and tested for their catalytic performance for dry CO2 reforming, combined steam–CO2 reforming and oxy–CO2 reforming of methane for production of syngas. The catalysts were characterized by using N2 physical adsorption, XRD, H2–TPR, SEM, CO2–TPD, NH3–TPD, TEM and TGA. The results revealed that ZrO2 phase was in crystalline form in the catalysts along with amorphous Al oxides. Ni and Co were confirmed to be in their respective spinel phases that were reducible to metallic form at 800 °C under H2. Ni and Co were well dispersed with their nano-crystalline nature. The catalyst with 0.2% loading of Rh showed superior performance in the studied reactions for reforming of methane. This catalyst also showed good coke resistance ability for dry CO2 reforming reaction with 3.8 wt% of carbon formation during the reaction as compared to 11.6 wt% carbon formation over the catalyst without Rh. The catalyst performance was stable throughout the reaction time for CH4 conversions, irrespective of carbon formation with slight decline (~1%) in CO2 conversion. For dry CO2 reforming reaction, this catalyst showed good conversion for both CH4 and CO2 (67.6% and 71.8% respectively) with a H2/CO ratio of 0.84, while for the Oxy-CO2 reforming reaction, the activity was superior with CH4 and CO2 conversions (73.7% and 83.8% respectively) and H2/CO ratio of 1.05.  相似文献   

12.
Nanoconfinement of 2LiBH4–MgH2–TiCl3 in resorcinol–formaldehyde carbon aerogel scaffold (RF–CAS) for reversible hydrogen storage applications is proposed. RF–CAS is encapsulated with approximately 1.6 wt. % TiCl3 by solution impregnation technique, and it is further nanoconfined with bulk 2LiBH4–MgH2 via melt infiltration. Faster dehydrogenation kinetics is obtained after TiCl3 impregnation, for example, nanoconfined 2LiBH4–MgH2–TiCl3 requires ∼1 and 4.5 h, respectively, to release 95% of the total hydrogen content during the 1st and 2nd cycles, while nanoconfined 2LiBH4–MgH2 (∼2.5 and 7 h, respectively) and bulk material (∼23 and 22 h, respectively) take considerably longer. Moreover, 95–98.6% of the theoretical H2 storage capacity (3.6–3.75 wt. % H2) is reproduced after four hydrogen release and uptake cycles of the nanoconfined 2LiBH4–MgH2–TiCl3. The reversibility of this hydrogen storage material is confirmed by the formation of LiBH4 and MgH2 after rehydrogenation using FTIR and SR-PXD techniques, respectively.  相似文献   

13.
The Cu-based catalysts with different supports (CeO2, ZrO2 and CeO2–ZrO2) for methanol steam reforming (MSR) were prepared by a co-precipitation procedure, and the effect of different supports was investigated. The catalysts were characterized by means of N2 adsorption–desorption, X-ray diffraction, temperature-programmed reduction, oxygen storage capacity and N2O titration. The results showed that the Cu dispersion, reducibility of catalysts and oxygen storage capacity evidently influenced the catalytic activity and CO selectivity. The introduction of ZrO2 into the catalyst improved the Cu dispersion and catalyst reducibility, while the addition of CeO2 mainly increased oxygen storage capacity. It was noticed that the CeO2–ZrO2-containing catalyst showed the best performance with lower CO concentration, which was due to the high Cu dispersion and well oxygen storage capacity. Further investigation illuminated that the formation of CO on CuO/ZnO/CeO2–ZrO2 catalyst mainly due to the reverse water gas shift. In addition, the CuO/ZnO/CeO2–ZrO2 catalyst also had excellent reforming performance with no deactivation during 360 h run time and was used successfully in a mini reformer. The maximum hydrogen production rate in the mini reformer reached to 162.8 dm3/h, which can produce 160–270 W electric energy power by different kinds of fuel cells.  相似文献   

14.
To improve hydrogen production performance, this paper describes a novel approach for fabricating a biofilm photobioreactor by adsorption of the photosynthetic bacteria (PSB) Rhodopseudomonas palustris CQK 01 on a hollow optical fiber (HOF) with a GeO2–SiO2–chitosan medium (GSCM) coating. The composition of the coating is analyzed using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The biocompatibility of the GSCM-coated HOF and the PSB in the hungry condition are examined. We also quantitatively investigate the biofilm dry weight; protein, polysaccharide, bacteriochlorophyll, carotenoid, and ATP contents of the biofilm cell; and average H2 production rates. The GSCM-coated HOF exhibits enhanced the biofilm biomass, improved the biofilm activity, and an increased H2 production rate. The proposed photobioreactor yielded fairly stable long-term performance with a hydrogen production rate of 2.65 mmol/L/h, which is 1.56 and 1.51 times higher than those of photobioreactors with an uncoated HOF and with a fiber having a roughened surface obtained by wrapping it in wire mesh, respectively.  相似文献   

15.
In this work, dehydrogenation and rehydrogenation of three LiNH2/CaH2 samples with LiNH2/CaH2 molar ratio of 2/1, 3/1 and 4/1 were systematically investigated. Remarkable differences were observed in the temperature dependence of hydrogen desorption and subsequent absorption. LiNH2/CaH2 in a molar ratio of 2/1 transforms to ternary imide Li2Ca(NH)2 after desorbing about 4.5 wt.% H2 at 350 °C. And it has a reversible hydrogen storage capacity of 2.7 wt.% at 200 °C. As for the LiNH2/CaH2 mixture in a molar ratio of 4/1, it transforms to a new compound with a composition of Li4CaN4H6 after being dehydrogenated at 350 °C. The rehydrogenation of both LiCa(NH)2 and Li4CaN4H6 gives LiNH2, LiH and the solid solution of 2CaNH–Ca(NH2)2.  相似文献   

16.
All-solid-state lithium secondary batteries using LiCoO2 active materials coated with Li2SiO3 and SiO2 oxide films and Li2S–P2S5 solid electrolytes were fabricated and their electrochemical performance was investigated. The electrochemical performace of the all-solid-state cells at a high voltage region was highly improved by using oxide-coated LiCoO2. The oxide coatings are effective in suppressing the formation of an interfacial resistance between LiCoO2 and the solid electrolyte at a high cutoff voltage of 4.6 V (vs. Li). As a result, charge–discharge capacities and cycle performance at the cutoff voltage were improved. The cell with Li2SiO3-coated LiCoO2 showed a large initial discharge capacity of 130 mAh g−1 and a good capacity retention of 110 mAh g−1 after 50th cycles at the cutoff voltage of 4.6 V (vs. Li).  相似文献   

17.
Ball milling the mixture of Mg(NH2)2, LiH and NH3BH3 in a molar ratio of 1:3:1 results in the direct liberation of 9.6 wt% H2 (11 equiv. H), which is superior to binary systems such as LiH–AB (6 equiv. H), AB–Mg(NH2)2 (No H2 release) and LiH–Mg(NH2)2 (4 equiv. H), respectively. The overall dehydrogenation is a three-step process in which LiH firstly reacts with AB to yield LiNH2BH3 and LiNH2BH3 further reacts with Mg(NH2)2 to form LiMgBN3H3. LiMgBN3H3 subsequently interacts with additional 2 equivalents of LiH to form Li3BN2 and MgNH as well as hydrogen.  相似文献   

18.
An Al/conductive coating/α-PbO2–CeO2–TiO2/β-PbO2–MnO2–WC–ZrO2 composite electrode material was prepared through electrochemical oxidation co-deposition on an Al/conductive coating/α-PbO2–CeO2–TiO2 substrate. The effects of manganese nitrate concentration on the chemical composition, electrocatalytic activity, and stability of the composite anode material were investigated using energy dispersive X-ray spectroscopy, anode polarization curves, quasi-stationary polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy, and X-ray diffraction. Results revealed that the WC and nano-ZrO2 content in the β-PbO2–MnO2–WC–ZrO2 composite coatings increased with increasing manganese nitrate concentration. Moreover, the highest values of 6.61 wt% and 3.51 wt%, respectively, were achieved at 80 g L−1 manganese nitrate. PbO2 content decreased and MnO2 content increased with the increasing manganese nitrate concentration; both the descending and ascending trends were nonlinear. The Al/conductive coating/α-PbO2–CeO2–TiO2/β-PbO2–MnO2–WC–ZrO2 composite electrode obtained at 80 g L−1 manganese nitrate concentration in plating solution exhibited reduced overpotential for oxygen evolution (0.610 V at 500 A m−2), highest electrocatalytic activity, longest service life (360 h at 40 °C in 150 g L−1 H2SO4 solution at 2 A cm−2), and lowest cell voltage (2.75 V at 500 A m−2). Furthermore, the composite coating obtained with 80 g L−1 manganese nitrate had uniform crystal grains. The deposit formed was flat, dense, and crackless.  相似文献   

19.
The cermet consisting of electronic conductor Ni and proton conductor La2Ce2O7 (LDC) shows good chemical stability but poor hydrogen permeability. In order to improve the hydrogen permeability, novel Ni–La2−xSmxCe2O7 (x = 0, 0.025, 0.05, 0.075, 0.1 and 0.2) cermets were developed for hydrogen separation. The results show that Sm element doping of LDC can affect the rate of hydrogen permeation, with Ni–La1.95Sm0.05Ce2O7 possessing the highest hydrogen permeation fluxes.  相似文献   

20.
Interaction of hydrogen with Ce3Co8Si intermetallic compound (IMC) has been studied. IMC Ce3Co8Si absorbs hydrogen and forms a hydride phase at 11 atm and 50 °C. X-ray analysis of Ce3Co8Si H10.2 saturated hydride phase lattice showed that it has the symmetry of the initial compound and is expanded with strong anisotropy due to increased c parameter. Analysis of hydrogen desorption isotherms in Ce3Co8Si–H2 system has revealed that the decomposition of hydride phase occurred in one stage. The heat of hydride phase formation was calculated on the base of obtained equilibrium pressures data at 50, 60 and 70 °C. The results obtained demonstrate that Ce3Co8Si intermetallic compound may be used as reversible accumulator of hydrogen in medium temperatures interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号