首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
2.
The stoichiometric reactions of ammonia borane (NH3BH3, AB) and selected alkali or alkaline-earth metal hydrides produce metal amidoboranes, which possess dehydrogenation property advantages over their parent AB. However, the losses of hydrogen capacity and chemical energy in the preparation process make metal amidoboranes less energy-effective for hydrogen storage application. In the present study, by combining the M+–Mg2+ double cations remarkably lowers the reactivity of the alkali metal hydrides toward AB. As a result, the starting Mg-based ternary hydrides MMgH3 (M = Na, K, Rb) and AB phases are largely stable in the mechanical milling process, but transform to the corresponding mixed-cation amidoboranes in the subsequent heating process. Importantly, when the post-milled 3AB/MMgH3 mixtures are isothermally heated at above 60 °C using water bath, the formation and decomposition processes of the mixed-cation amidoboranes can be favorably combined, giving rise to rapid and efficient dehydrogenation performances at the mild temperatures (60–80 °C). The results acquired may provide a generalized reactions coupling strategy for designing and synthesis other potentially efficient hydrogen storage system.  相似文献   

3.
Two composite hydrogen storage materials based on Mg2FeH6 were investigated for the first time. The Mg2FeH6–LiBH4 composite of molar ratio 1:5 showed a hydrogen desorption capacity of 5.6 wt.% at 370 °C, and could be rehydrogenated to 3.6 wt.% with the formation of MgH2, as the material was heated to 445 °C and held at this temperature. The Mg2FeH6–LiNH2 composite of 3:10 molar ratio exhibited a hydrogen desorption capacity of 4.3 wt.% and released hydrogen at 100 °C lower then the Mg2FeH6–LiBH4 composite, but this mixture could not be rehydrogenated. Compared to neat Mg2FeH6, both composites show enhanced hydrogen storage properties in terms of desorption kinetics and capacity at these low temperatures. In particular, Mg2FeH6–LiNH2 exhibits a much lower desorption temperature than neat Mg2FeH6, but only Mg2FeH6–LiBH4 re-absorbs hydrogen.  相似文献   

4.
Tests on a metal hydride based thermal energy storage system   总被引:1,自引:0,他引:1  
In this paper, the performance tests on Mg + 30% MmNi4 based thermal energy storage device is presented. Experiments were carried out at different supply pressures (10–30 bar) and absorption temperatures (120–150 °C). The effects of hydrogen supply pressure and absorption temperature on the amount of hydrogen/heat stored and thermal energy storage coefficient are presented. The maximum hydrogen storage capacity of 2.5wt% is reported at the operating conditions of 20 bar supply pressure and 150 °C absorption temperature. For a given absorption temperature of 150 °C, the thermal energy storage coefficient is found to increase from 0.5 at 10 bar to 0.74 at 30 bar supply pressure. For the given operating conditions of 20 bar supply pressure and 150 °C absorption temperature, the maximum amount of heat stored is about 0.714 MJ/kg and the corresponding thermal energy storage coefficient is 0.74.  相似文献   

5.
Mg2CoH5 was synthesized by reactive mechanical milling (RMM) under hydrogen atmosphere (0.5 MPa) from 2MgH2–Co and 3MgH2–Co mixtures, with a yield >80%. The microstructure, structure and thermal behavior of the phases formed during the processing were investigated by transmission electron microscopy, X-ray diffraction and differential scanning calorimetry. Kinetic properties of the reaction with hydrogen of the 2MgH2–Co and 3MgH2–Co mixtures after RMM were evaluated using modified Sieverts-type equipment. The 3MgH2–Co mixture showed better properties for storage applications, with its highest rate of hydrogen absorption and desorption at 300 °C, its storage capacity of about 3.7 wt% in less than 100 s, and good stability after cycling. Although the starting material presents Mg2CoH5 as majority phase, the cycling leads to disproportion between Mg and Co. We obtained a mixture of Mg2CoH5, Mg6Co2H11 and MgH2 hydrides, as well as other phases such as Co and/or Mg, depending on experimental conditions.  相似文献   

6.
In this paper, we report the hydrogen storage properties and reaction mechanism of NaAlH4–MgH2–LiBH4 (1:1:1) ternary-hydride system prepared by ball milling. It was found that during ball milling, the NaAlH4/MgH2/LiBH4 combination converted readily to the mixture of LiAlH4/MgH2/NaBH4 and there is a mutual destabilization among the hydrides. Three major dehydrogenation steps were observed in the system, which corresponds to the decomposition of LiAlH4, MgH2, and NaBH4, respectively. The onset dehydrogenation temperature of MgH2 in this system is observed at around 275 °C, which is over 55 °C lower from that of as-milled MgH2. Meanwhile, NaBH4-relevant decomposition showed significant improvement, starts to release hydrogen at 370 °C, which is reduced by about 110 °C compared to the as-milled NaBH4. The second and third steps decomposition enthalpy of the system were determined by differential scanning calorimetry measurements and the enthalpies were changed to be 61 and 100 kJ mol−1 H2 respectively, which are smaller than that of MgH2 and NaBH4 alone. From the Kissinger plot, the apparent activation energy, EA, for the decomposition of MgH2 and NaBH4 in the composite was reduced to 96.85 and 111.74 kJ mol−1 respectively. It is believed that the enhancement of the dehydrogenation properties was attributed to the formation of intermediate compounds, including Li–Mg, Mg–Al, and Mg–Al–B alloys, upon dehydrogenation, which change the thermodynamics of the reactions through altering the de/rehydrogenation pathway.  相似文献   

7.
Multinary complex hydrides comprised of borohydrides, amides and metal hydrides have been synthesized using the solid state mechano-chemical process. After the optimization of the system, it was found that LiBH4/LiNH2/MgH2 exhibits potential reversible hydrogen storage behavior (>6 wt.%) at temperatures of 125–175 °C. To further improve the hydrogen performance of the system, various nano additives namely, nickel, cobalt, iron, copper, and manganese were investigated. It was observed that some of these additives (Co, Ni) lowered the hydrogen release temperature at least 75–100 °C in the major hydrogen decomposition step. While other additives acted as catalysts and increased the rate at which hydrogen was released. Combinatorial addition of selected materials were also investigated and found to have both a positive effect on kinetics and reduction in hydrogen desorption temperature.  相似文献   

8.
9.
The hydrogen storage properties of LiAlH4 doped efficient TiN catalyst were systematically investigated. We observe that TiN catalyst enhances the dehydrogenation kinetics and decreases the dehydrogenation temperature of LiAlH4. The dehydrogenation behaviors of 2%TiN–LiAlH4 are investigated using temperature programmed desorption (TPD), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR). Interestingly, the onset hydrogen desorption temperature of 2%TiN–LiAlH4 sample gets lowered from 151.0 °C to 90.0 °C with a faster kinetics, and the dehydrogenation rate reached a maximum value at 137.2 °C. By adding a small amount of as-prepared TiN, approximately 7.1 wt% of hydrogen can be released from the LiAlH4 at 130 °C. Interestingly, the result of the FTIR indicates that the 2%TiN–LiAlH4 maybe restore hydrogen under 5.5 MPa hydrogen. Moreover, 2%TiN–LiAlH4 displayed a substantially reduced activation energy for LiAlH4 dehydrogenation.  相似文献   

10.
11.
This paper presents a combined application of in-situ and ex-situ evaluations of products obtained by thermochemical recycling process of NaBH4 from NaBO2–Mg–H2 ternary system. In-situ yield evaluation according to on-line pressure measurements of hydrogen gas, although already applied by some authors, is presented here with an innovative analysis which offers a thorough comprehension of the NaBH4 regeneration process making feasible the qualitative and quantitative estimations of product and by-product. On the basis of in-situ observations, NaBH4 formation in presence of NaBO2–Mg–H2 ternary system initiates slowly from 400 °C and accelerates above 550 °C to the melting point of Mg at 650 °C. MgH2 is significantly produced between 370 °C and 450 °C in both heating and cooling. The amounts of these products produced at the different temperatures are clearly detectable by hydrogen pressure drops. Additionally, ex-situ evaluations by titration of NaBH4 have also been performed in order to confirm the correct interpretation of the experimental data.  相似文献   

12.
In this article, we investigate the ternary LiNH2–MgH2–LiBH4 hydrogen storage system by adopting various processing reaction pathways. The stoichiometric ratio of LiNH2:MgH2:LiBH4 is kept constant with a 2:1:1 molar ratio. All samples are prepared using solid-state mechano-chemical synthesis with a constant rotational speed, but with varying milling duration. Furthermore, the order of addition of parent compounds as well as the crystallite size of MgH2 are varied before milling. All samples are intimate mixtures of Li–B–N–H quaternary hydride phase with MgH2, as evidenced by XRD and FTIR measurements. It is found that the samples with MgH2 crystallite sizes of approximately 10 nm exhibit lower initial hydrogen release at a temperature of 150 °C. Furthermore, it is observed that the crystallite size of Li–B–N–H has a significant effect on the amount of hydrogen release with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160 °C and the other around 300 °C. The main hydrogen release temperature is reduced from 310 °C to 270 °C, while hydrogen is first reversibly released at temperatures as low as 150 °C with a total hydrogen capacity of ∼6 wt.%. Detailed thermal, capacity, structural and microstructural properties are discussed and correlated with the activation energies of these materials.  相似文献   

13.
CaNi5–based alloys have been synthesized by mechanical alloying followed by isothermal annealing. The formation of the CaNi5 structure occurred when the milled powders were heated at 800 °C under vacuum for 3 h. The abundance of CaNi5 phase in the alloys ranges from 60 to 70 wt.%. Replacement of Zr into the Ca site reduces the unit cell volume of CaNi5 whilst replacement of Cr into the Ni site slightly increases the unit cell volume. The hydrogen storage capacity of all substituted alloys is decreased and the hydrogen sorption plateau regions are narrowed compared to those of pure CaNi5. Substitution of Zr into the Ca site extinguishes the flat plateau region unlike replacement of Cr into the Ni site where a flat plateau is maintained. The reaction enthalpy ΔH for both absorption and desorption are directly proportional to the unit cell volume of the alloys. The hydrogen storage capacity of all alloys rapidly decays for the first 50 cycles at 85 °C followed by a more gradual decline after 50 further cycles. The hydrogen storage capacity of the alloys after 200 cycles is in the range of 65–75% of the initial capacity.  相似文献   

14.
By using density functional theory and the full-potential linearised augmented plane wave method, the effect of alkali (AM) and transition metal (TM) atom substitutions in Li based hydrides (Li7XH8 X (AM) = Na, K, Rb and X (TM) = Ti, V, Cr) was investigated, by studying their formation energies and electron properties, aiming at improving hydrogen storage performance. The calculated formation energy values indicate that there is a gradual degradation in stability due to alkali substitutions from Na to Rb and to transition metal substitutions from Ti to Cr in Li7XH8. The found degradations of stability in Li7XH8 were better compared concomitantly with corresponding gravimetric hydrogen storage variations. The less stable phase with least variation in gravimetric hydrogen storage was found to be Li7CrH8 among all alkali and transition metal atom substitutions. The density of states and the electron density support our observations.  相似文献   

15.
The reaction kinetics of metal hydride pairs consisting of La0.9Ce0.1Ni5, La0.8Ce0.2Ni5, LaNi4.7Al0.3 and LaNi4.6Al0.4 were measured at different temperatures to determine their suitability for metal hydride – based cooling systems (MHCSs). The effect of operating conditions and compositional changes on driving potential and reaction rates during cooling and regeneration processes was studied. The reaction rates were increased with Ce content and decreased with Al content. The cooling and regeneration time of MHCS, for working temperature range of 140 °C (heat source), 25 °C (heat sink) and 10 °C (cooling), were measured for each pair. The estimated cycle time took the following trend (La0.8Ce0.2Ni5 – LaNi4.7Al0.3) < (La0.9Ce0.1Ni5 – LaNi4.7Al0.3) < (La0.8Ce0.2Ni5 – LaNi4.6Al0.4) < (La0.9Ce0.1Ni5 – LaNi4.6Al0.4). Two reaction kinetics models namely Jander diffusion model (JDM) and Park – Lee model (PLM) were studied and employed for reaction kinetics analyses. The activation energies (E) of these hydrides were calculated using the Arrhenius plot. Estimated values of activation energies from these models were compared by substituting in the hydriding expression and accurate values of activation energies established for these hydrides.  相似文献   

16.
Mg–Ti–H samples were mechano-chemically synthesized by ball milling in argon atmosphere or under elevated hydrogen pressure. The detailed reaction mechanism during hydrogen release and uptake during continuous cycling was investigated by in-situ synchrotron radiation powder X-ray diffraction (SR-PXD) experiments. The thermal behaviour of the samples and hydrogen desorption properties were examined by simultaneous thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and mass spectrometry (MS) measurements. A ternary Ti–Mg–H compound with a fcc lattice form during mechano-chemical sample preparation in hydrogen atmosphere using metal powders, but not using metal hydrides as reactants. The amount of β-MgH2 increases during the first hydrogen absorption cycle at 300 °C at the expense of the high-pressure polymorph, γ-MgH2 and the amount of β-MgH2 remain constant during the following hydrogenations. This study reveals that the ternary compound tends to absorb increasing amounts of magnesium in the dehydrogenated state during cycling. A strong coupling between the amounts of magnesium in the ternary Ti–Mg–H phase and the formation of magnesium and magnesium hydride during hydrogen release and uptake at 300 °C is observed. The composition and the amount of the Ti–Mg–H phase appear to be similar in the hydrogenated state. Fast absorption–desorption kinetics at 300 °C and lower onset temperatures for hydrogen release is observed for all investigated samples (lowest onset temperature of desorption Ton = 217 °C).  相似文献   

17.
Complex hydrides are identified as promising hydrogen storage media with gravimetric capacities up to 10 wt.%. However, the high temperatures required for the initiation of their hydrogen charging process and their slow kinetics prevent their integration in many practical applications. This paper discusses the challenge of addressing these issues by combining this kind of materials with the appropriate metal hydrides. For this purpose, the complex hydride, 2LiNH2–1.1MgH2–0.1LiBH4–3 wt.% ZrCoH3 (CxH) and the metal hydride, LaNi4.3Al0.4Mn0.3 (MeH) have been selected as reference materials. The studied configuration corresponds to a tubular reactor where the metal hydride and the complex hydride, separated by a gas permeable layer, are embedded respectively in the centre and the annular ring of the reactor. A 1-dimensional finite element model and a dimensionless number comparing the dominance of the kinetics and the heat transfer processes have been developed to optimize the charging process for different thicknesses and volumetric ratios of the studied materials. For the selected cases, the influence of the thermal properties of the complex hydride and the operating conditions on the charging process is assessed. A sensitivity study has shown that the thermal conductivity of the CxH is the most important parameter influencing the hydrogen storage rate if thick MeH and CxH beds are considered. In contrast, the hydrogen loading time is significantly improved by increasing the coolant temperature for small thicknesses of the two storage media. Thereafter, the gravimetric and volumetric capacities resulting from the scale up of the optimized configurations to store 1 kg of hydrogen are calculated and results are discussed taking into account the interdependence of the different studied parameters.  相似文献   

18.
The hydrogen sorption behavior of the Mg2FeH6–MgH2 hydride system is investigated via in-situ synchrotron and laboratory powder X-ray diffraction (SR-PXD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle size distribution (PSD) and volumetric techniques. The Mg2FeH6–MgH2 hydride system is obtained by mechanical milling in argon atmosphere followed by sintering at high temperature and hydrogen pressure. In-situ SR-PXD results show that upon hydriding MgH2 is a precursor for Mg2FeH6 formation and remained as hydrided phase in the obtained material. Diffusion constraints preclude the further formation of Mg2FeH6. Upon dehydriding, our results suggest that MgH2 and Mg2FeH6 decompose independently in a narrow temperature range between 275 and 300 °C. Moreover, the decomposition behavior of both hydrides in the Mg2FeH6–MgH2 hydride mixture is influenced by each other via dual synergetic-destabilizing effects. The final hydriding/dehydriding products and therefore the kinetic behavior of the Mg2FeH6–MgH2 hydride system exhibits a strong dependence on the temperature and pressure conditions.  相似文献   

19.
Recently calcium hydride has attracted attention as a possible component in ternary complex hydrides such as Ca(AlH4)2, Ca2SiHx and quaternary complex hydrides of the type Li–B–Ca–H. Although in bulk form CaH2 decomposes reversibly above 600° centigrade we were motivated to see whether calcium hydride in cluster form has properties suitable for hydrogen storage. We report here the results of DFT calculations using VASP® package for clusters CanH2n with n = 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 20 to get the ground state geometries, energies, bond lengths, and desorption energies, after molecular dynamics optimization. The desorption energy vs. cluster size n curve showed that the desorption energy goes up sharply to ∼1.4 eV per H2 for n up to 4, followed by a broad maximum of ∼1.8 eV per H2 around n = 12–14, and then tapers off to a nearly constant value of 1.6 eV per H2 approximating bulk behavior, which compares favorably with previously reported results. Comparison of these results with those of MgnH2n shows that CanH2n has a lesser potential as a hydrogen storage medium.  相似文献   

20.
A study on the hydrogen storage properties of flexible and porous La0.8Mg0.2Ni3.8/PVDF (polyvinylidene fluoride) composite was reported. In this composite, PVDF acted as a binder to connect the alloy powders and (NH4)2CO3 as a pore-forming agent to create void space. Increasing PVDF content, the hydrogen absorption kinetics of the composite gradually decreased. Increasing (NH4)2CO3 from 1% to 5%, the capacity firstly increased and then decreased. 0.08–0.13 wt% increased capacity for the composite was observed at 70 °C by comparison with the intrinsic composite (La0.8Mg0.2Ni3.8/1%PVDF). Varying temperature from 0 °C to 100 °C, 0.1–0.15 wt% increased capacity were obtained for the typical porous composite (La0.8Mg0.2Ni3.8/1%PVDF/3%(NH4)2CO3). The PVDF-assisted composite showed the flexible/solidified characteristic in hydriding/dehydriding, which maybe lowed down the oxidation of the alloy powders and preserved the void space. Finally, ∼0.1 wt% increased capacity remained after ten hydriding/dehydriding cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号