首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A one-pot synthesis method is utilized for the fabrication of ultrasmall platinum-silver nanoparticles decorated on graphene (PtAg/G) catalyst. This method has several advantages such as inexpensiveness, simplicity, low temperature, surfactant free, reductant free, being environmentally friendly and greenness. In this work, graphene and silver formate were dispersed in ultrapure water in an ultrasonic bath at 25 °C followed by through a galvanic displacement reaction; to prepare PtAg/G, PtCl2 was added to the suspension under mild stirring condition. The morphology, crystal structure and chemical compositions of the as-fabricated PtAg/G and Pt/C catalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Energy dispersive X-ray spectroscopy (EDS) techniques. Electrochemical techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical activity of the PtAg/G and Pt/C catalysts. The TEM images illustrate the uniform distribution of ultrasmall PtAg nanoparticles with the average size of 2–3 nm on the graphene nanosheets. The PtAg/G promoted the current density 2.46 times as much as Pt/C with a negative shift in onset oxidation potential and peak potential for oxidation reaction of methanol. Besides, the novel PtAg/G catalyst shows large electrochemically active surface area, lower apparent activation energy, and higher levels of durability in comparison to the Pt/C catalyst for the oxidation of methanol. The PtAg/G catalyst depicts extraordinary catalytic performance and stability to those of the Pt/C catalyst toward methanol oxidation in alkaline media.  相似文献   

2.
We successfully synthesized mesocrystalline Ta2O5 nanosheets supported bimetallic PdPt nanoparticles by the photo-reduction method. The as-prepared mesocrystalline Ta2O5 nanosheets in this work showed amazing visible-light absorption, mainly because of the formation of oxygen vacancy defects. And the as-prepared bimetallic PdPt/mesocrystalline Ta2O5 nanaosheets also showed highly enhanced UV–Vis light absorption and highly improved photocatalytic activity for hydrogen production in comparison to that of commercial Ta2O5, mesocrystalline Ta2O5 nanosheets, Pd/mesocrystalline Ta2O5 nanosheets and Pt/mesocrystalline Ta2O5 nanosheets. The highest photocatalytic hydrogen production rate of PdPt/mesocrystalline Ta2O5 nanaosheets was 21529.52 g?1 h?1, which was about 21.2 times of commercial Ta2O5, and the apparent quantum efficiency of PdPt/mesocrystalline Ta2O5 nanaosheets for hydrogen production was about 16.5% at 254 nm. The highly enhanced photocatalytic activity was mainly because of the significant roles of PdPt nanoparticles for accelerating the charge separation and transport upon illumination. The as-prepared PdPt/mesocrystalline Ta2O5 nanaosheets in this work could serve as an efficient photocatalyst for green energy production.  相似文献   

3.
Carbonaceous materials containing non-precious metal atoms and doped with nitrogen have enthralled stunning attention in the field of electrochemical energy conversion systems. Herein, we demonstrated a facile method to fabricate iron and nitrogen doped carbon nanofiber (FeN-CNFs) catalyst material from ferric chloride and interfacial synthesized polyaniline (PANI) nanofibers, by carbonization process in an inert atmosphere at 800 °C. Further, synthesized material was characterized by elemental analysis and X-ray photoelectron spectroscopy (XPS) that confirms the presence of FeN bonds. The structural and morphological features are studied using various microscopy and spectroscopy techniques. The oxygen reduction reaction (ORR) activity of synthesized catalyst materials was examined by rotating disk electrode experiments in 0.1 M KOH. Among all these synthesized materials FeN-CNFs material showed enhanced ORR activity regarding current density and onset potential. Also, FeN-CNFs catalyst exhibited tolerance to methanol and durability in comparison to commercial Pt/C catalyst. The superior performance of FeN-CNFs may be attributed due to the introduction of Fe and formation of FeN bond in catalyst material.  相似文献   

4.
By surface-decorating PtTiO2 hybrid catalyst with MoS2 nanosheets, we prepared a new MoS2/PtTiO2 ternary system as high-performance photocatalysts. The ternary MoS2/PtTiO2 outperforms both the binary MoS2TiO2 and PtTiO2 systems in photocatalytic hydrogen evolution with an AQY (apparent quantum yield) value of 12.54% at 420 nm, owing to the unique ternary design that creates more efficient electron transport path and electron-hole separation mechanism. Electrochemical characterization showed that the MoS2/PtTiO2 ternary electrode afford an efficient pathway of photo-excited electrons from TiO2 to surface-decorated Pt nanoparticles using MoS2 and internal Pt nanoparticles as bridges, thus significantly promoting electron transfer, reducing the system overpotential and leading to the activation of more reactive sites. This internal electron transfer pathway (TiO2 → Pt (internal) → MoS2 → Pt (surface)) eliminates the need of other metal cocatalysts because the Pt nanoparticles play two roles of storing the conduction band electrons of TiO2 and acting as co-catalyst for reduction of protons to hydrogen. This unique ternary metal-semiconductor heterojunction for efficient photocatalytic hydrogen evolution provides a meaningful reference for reasonable design of other hybrid photocatalysts.  相似文献   

5.
In recent years, biomass has been introduced as a promising solution for environmental crisis. Biomass steam gasification is a valuable process for hydrogen production. Main problem of this process is low conversion and low partial pressure of hydrogen in product stream. PdAg membrane reactor (MR) can be used in biomass steam gasification to improve the process efficiency. Hence, Computational fluid dynamic (CFD) method was used in this study for a detail modeling and analyzing the biomass steam gasification in a two-dimensional PdAg MR. After good agreement of CFD model results with literature experimental data, simulation results was indicated that the PdAg MR has better efficiency compared with traditional reactor (TR). Biomass conversion of near 100%, CO selectivity in the range 0–14 and H2 recovery of 70% in the best condition were achieved. In addition, different flow patterns (cocurrent and counter-current modules) were compared for MR and overall efficiency (biomass conversion) of counter-current model was obtained higher than co-current model. In summary, for all operating conditions and modules, PdAg MR was showed better efficiency compared with TR.  相似文献   

6.
In this paper, sulfonated nitrogen sulfur co-doped graphene (S-NS-GR) nanocomposite, i.e., nitrogen sulfur co-doped graphene functionalized with SO3H group as a novel catalyst support material was prepared. PtPd nanoparticles (PtPd NPs) were deposited on the surface of S-NS-GR by a facile electrochemical approach. The morphology and structure of Pd-PtNPs/S-NS-GR were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and electrochemical impedance spectroscopy (EIS), respectively. In addition, the electrocatalytic performance of catalyst for methanol oxidation reaction (MOR) was systematically studied by cyclic voltammetry and chronoamperometry in alkaline media. Compared with PtPd NPs supported on nitrogen sulfur co-doped graphene (Pt-PdNPs/NS-GR), the excellent performance of Pd-PtNPs/S-NS-GR is mainly ascribed to the embedding of abundant functional groups (SO3H) into the NS-GR layers, which not only facilitate the homogeneous distribution of metal NPs, but also strengthen the interaction between metals and support material, thus improve the stability of catalyst in MOR.  相似文献   

7.
This work first reports AuCu alloys deposited on the surface of TiO2 nanosheets (TiNs) to form heterojunction. A simple deposition-precipitation method was used to construct a new type of AuCu/TiNs heterostructures through gradually depositing Au and Cu nanoparticles on TiNs. Such structures served the dual advantage of constructing a heterostructure which can improve visible light absorption, and the formation of a Schottky barrier between AuCu alloys (lower Fermi level) and TiNs (higher Fermi level) which can suppress the recombination of photo-generated charge carriers to improve the overall photocatalytic activity. The mass ratio of Au and Cu in the AuCu/TiNs heterostructures and the sequence and method of their deposition are found to be the important factors which affect the photocatalytic performance. When the mass ratio of Au to Cu was determined to be 1: 1, the AuCu/TiNs heterostructure exhibited the best photocatalytic performance for hydrogen production from water splitting (over 9 times than TiNs, 1.47 times than Au/TiNs, and 1.75 times than Cu/TiNs).  相似文献   

8.
Through electrodeposition, controlling hydrogen evolution reaction and selective electrochemical dealloying of copper from NiCu porous foam, highly nanoporous nickel and nickel oxide is fabricated on the copper surface. Electrochemically reduced graphene oxide (ERGO) is loaded on the NiNiO foam as high-performance electrodes for supercapacitors through pulsed galvanostatic reduction of drop casted graphene oxide nanosheets at different duty cycles and frequencies. Surface morphology and composition of fabricated ERGO/NiNiO foam composite electrodes are characterized using scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Raman Spectroscopy. Electrochemical impedance spectroscopy (EIS) measurements, galvanostatic charge/discharge (GCD) and cyclic voltammetry (CV) are carried out to study the electrochemical behavior of ERGO/NiNiO foam electrodes. From structural and electrochemical characterizations, optimized parameters for pulse duty cycle and frequency were found to be 10% and 1000 Hz, respectively. As a result, the ERGO/NiNiO foam film (ic = ?10 mA/cm2, f = 1000 Hz and DC = 10%) provides a specific capacitance of 2298 F/g in 1 M KOH at a current density of 1 A/g. Stability study of fabricated film represents a long cycling life up to 4000 cycles with 0.7% decay in specific capacitance at the high current density of 20 A/g in the potential range of 0–0.6 V vs. saturated calomel electrode (SCE).  相似文献   

9.
The mechanism of tandem dimethylamine-borane (NHMe2BH3, DMAB) dehydrogenation and alkene hydrogenation catalyzed by [Pd(NHC)(PMe3)] are investigated by density functional theory (DFT) calculations [NHC = N,N′-bis(2,6-diisopropylphenyl) imidazole-2-ylidene]. Four possible DMAB dehydrogenation mechanisms have been carefully investigated involving concerted BH/NH activation, sequential BH/NH activation, sequential NH/BH activation, and proton transfer mechanism. DFT studies show that the NH proton transfers to ligated carbene carbon and sequential CH/BH activation is the most kinetically favorable pathway with the lowest activation barrier of 23.8 kcal/mol. For hydrogenation, it was found that a trans-dihydride Pd(II) complex, [Pd(H)2(NHC)(PMe3)], formed in the dehydrogenation process, serves as an effective catalyst for reduction of trans-stilbene.  相似文献   

10.
A novel photocatalyst comprises of ZrO2TiO2 immobilized on reduced graphene oxide (rGO) – a ternary heterojunction (ZrO2TiO2/rGO) was synthesized by using facile chemical method. The nanocomposite was prepared with a strategy to achieve better utilization of excitons for catalytic reactions by channelizing from metal oxide surfaces to rGO support. TEM and XRD analysis results revealed the heterojunction formed between ZrO2 and single crystalline anatase TiO2. The mesoporous structure of ZrO2TiO2 was confirmed using BET analysis. The red shift in absorption edge position of ZrO2TiO2/rGO photocatalyst was characterized by using diffuse reflectance UV–Visible spectra. ZrO2TiO2/rGO showed greater interfacial charge transfer efficiency than ZrO2TiO2, which was evidenced by well suppressed PL intensity and high photocurrent of ZrO2TiO2/rGO. The suitable band gap of 1.0 wt% ZrO2TiO2/rGO facilitated the utilization of solar light in a wide range by responding to the light of energy equal to as well as greater than 2.95 eV by the additional formation of excited high-energy electrons (HEEs). ZrO2TiO2/rGO showed the enhanced H2 production than TiO2/rGO, which revealed the role of ZrO2 for the effective charge separation at the heterojunction and the solar light response. The optimum loading of 1.0 wt% of ZrO2 and rGO on TiO2 showed the highest photocatalytic performance (7773 μmolh?1gcat?1) for hydrogen (H2) production under direct solar light irradiation.  相似文献   

11.
Zeolitic Imidazolate Frameworks (ZIF) is one of the potential candidates as highly conducting networks with large surface area with a possibility to be used as catalyst support for low temperature fuel cells. In the present study, highly active state-of-the-art PtCo@NCNTs (Nitrogen Doped Carbon Nanotube) catalyst was synthesized by pyrolyzing ZIF-67 along with Pt precursor under flowing ArH2 atmosphere. The multi-walled NCNTs were densely grown on the surface of ZIF particles after pyrolysis. The high resolution TEM examination was employed to examine the nature of the PtCo particles as well as multi-walled NCNTs. Rotating disk electrode study was used for measuring oxygen reduction reaction performance for PtCo@NCNTs in 0.1 M HClO4 and compared with commercial Pt/C catalyst. Fuel cell performance with PtCo@NCNT and commercial Pt/C catalysts was evaluated at 70 °C using Nafion-212 electrolyte using H2 and O2 gases (100% RH) and the observed peak power density of 630 and 560 mW cm?2, respectively.  相似文献   

12.
This study is focused on a diopside-based glass-ceramic sealant for solid oxide fuel cells and its compatibility with AISI 441 stainless steel interconnect. The morphological and chemical stability with both bare and MnCo spinel coated AISI 441 steel, after 3500 h exposure at 800 °C in air, is reviewed and discussed. Post-mortem samples are morphologically and chemically analysed by SEM-EDS. Reaction products at the glass-ceramic/bare AISI 441 interface, resulting from the reaction of Mg from the sealant and Cr and Mn from the steel, are detected, without affecting negatively the integrity of the joints. In the case of MnCo spinel coated AISI 441, interactions between the glass-ceramic and the outer part of the MnCo spinel coating, along with crystallization of oxides rich in Si and Mg, are detected, but still no corrosion phenomena are present. The glass-ceramic is found to be compatible with both bare and coated AISI 441.  相似文献   

13.
A series of PtRu and PtMo bimetallic catalysts were prepared via a chemical reduction method by bubbling CO to form carbonyl compounds as metal precursors. In both cases the PtRu and PtMo bimetallic electrocatalysts achieved the maximum activity when the amount of Ru and Mo in the material was 50%wt. The physicochemical characterization of the electrocatalytic materials through X-ray diffraction (XRD) and transmission electron microscopy (TEM) has determined the presence of bimetallic structures. The electrochemical characterization using cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and polarization curves in Proton Exchange Membrane Fuel Cells (PEMFC) and Direct Methanol Fuel Cell (DMFC) allowed to systematically investigate the electrocatalytic activity of the synthesized materials for the electrooxidation of hydrogen and methanol. The PtRu/SWCNT electrocatalysts showed a higher current density at least 7-fold and 3-fold compared with Pt/SWCNT and PtMo/SWCNT electrocatalysts, respectively. Besides, the Pt50%–Ru50%/SWCNT exhibited a shifting to negative values in the onset potential reaction for the electrooxidation of methanol of 200 mV in comparison with Pt100%/SWCNT and Pt50%–Mo50%/SWCNT electrocatalysts. The experimental and simulated polarization curves obtained from DMFC show that PtRu/SWCNT and PtMo/SWCNT electrocatalysts exhibited higher power and current densities values compared with the Pt/SWCNT electrocatalyst. The membrane-electrode assembly (MEA) with Nafion® and the PtRu/SWCNT electrocatalysts showed an open-circuit voltage value of 0.730 V, significantly higher than that the values for the MEAs with Pt/SWCNT (0.663 V) and PtMo/SWCNT (0.633 V), respectively.  相似文献   

14.
2D CdS/NiFe LDH (short for layered double hydroxide) heterostructures were designed and fabricated by following a facile in-situ growth method. The CdS nanoparticles are well dispersed on the surface of NiFe LDH to form nanoscale heterojunctions, as suggested from the TEM and elemental mapping images. The composites with optimum CdS amount (15 wt%) take on notably higher hydrogen evolution activity (469 μmol h?1 g?1) than the independent CdS and NiFe LDH from aqueous methanol solution under xenon lamp irradiation. The nano-heterojunction notably promotes the H2 evolution kinetics and greatly suppresses the recombination of photo-induced electrons and holes, which is responsible for the enhanced photocatalytic activity of the composites, as demonstrated by the reducing onset potential and increasing photocurrent of the composites in the photoelectrochemical experiments. The possible photocatalytic mechanism is proposed on the basis of the defined position of energy band edges.  相似文献   

15.
Carbon deposition during carbon dioxide reforming reaction of C3H8 has been studied over alumina-supported bimetallic Mo/CoNi catalysts. To better understand the carbon-induced deactivation during the reforming reaction, changes in catalyst morphology and carbon deposition kinetics were examined. Different characterization techniques were used for both fresh and rejuvenated catalysts including liquid nitrogen adsorption/desorption, chemisorption via hydrogen, ammonia and CO2 desorption, and thermogravimetric measurement of the coked catalysts. The time dependant reaction rate profiles indicated that MoNi catalyst has higher syngas (H2/CO) formation rates with lower CO2 rate of consumption compared to CoNi catalyst. However, the H2:CO ratio values were almost the same for both catalysts suggesting similarity in the product formation pathway. Conversion-time analysis showed that MoNi catalyst was more stable and active during a 72-h run while CoNi suffered noticeable deactivation after 30 h on-stream. Reaction-deactivation models implicated a higher deactivation coefficient (kd) with activation energy of Ed = 78.1 kJ mol?1 for the cobalt-containing Ni catalyst, while the Ni catalyst with molybdenum had a lower deactivation coefficient with smaller activation energy of just under 70 kJ mol?1. Post-mortem analysis (TPR-TPO dual cycle and TOC) of spent catalysts confirmed that the surface of CoNi catalyst has more carbon residue than the MoNi sample which was consistent with the higher deactivation of CoNi.  相似文献   

16.
Bimetallic nanoparticles of Au and Ni in the form of alloy nanostructures with varying Ni content are synthesized on reduced graphene oxide (rGO) sheets via a simple solution chemistry route and tested as electrocatalysts towards the hydrogen evolution (HE) and oxygen reduction (OR) reactions using polarization and impedance studies. The AuNi alloy NPs/rGO nanocomposites display excellent electrocatalytic activity which is found to improve with increasing Ni content in the AuNi/rGO alloy nanocomposites. For HER, the best AuNi alloy NPs/rGO electrocatalyst, the one with the highest Ni content, exhibits high activity with an onset overpotential approaching zero versus the reversible hydrogen electrode and an overpotential of only 37 mV at 10 mA cm?2. Additionally, a low Tafel slope of 33 mV dec?1 and a high exchange current density of 0.6 mA cm?2 are measured which are very close to those of commercial Pt/C catalyst. Also, in the ORR tests, this electrocatalyst displays comparable activity to Pt/C. The Koutecky–Levich plots referred to a 4-electron mechanism for the reduction of dissolved O2 on the AuNi alloy NPs/rGO catalyst. The electrocatalyst thus demonstrates excellent activity towards HER and ORR. Additionally, it exhibits outstanding operational durability and activation after 10,000th cycles assuring its practical applicability.  相似文献   

17.
A supercapacitor electrode comprising conducting polypyrrole (PPy) coated on manganese oxide-carbon fiber (CNFMnO2) was successfully synthesized using electrospinning, followed by carbonization and in-situ polymerization. A non-uniform distribution of PPy on the surface of CNFMnO2 was observed via FESEM analysis. The chemical bonding of CNFMnO2/PPy and the valence state of manganese were revealed via FTIR, Raman spectroscopy, XRD and XPS measurements. CNFMnO2/PPy composite possessed high specific capacitance and specific energy of 315.80 Fg?1 and 13.68 Wh/kg, respectively. In addition, good electrochemical reversibility was proven upon CNFMnO2/PPy even at higher sweep rate (5–200 mV/s). Moreover, this one-dimensional electrode achieved an excellent long-term cycling stability (82.46%) over 2000 CV cycles with low charge transfer resistance (4.61 Ω). The modification of CNFMnO2/PPy contributes to good synergistic effects among the material which improve the electrochemical behavior of manganese oxide-based fiber composite for future supercapacitor.  相似文献   

18.
A compact and adherent CoCu spinel coating on ferritic stainless steel was developed by electroplating a CoCu alloy layer followed by oxidation. The CoCu alloy was oxidized into a three-layer structure consisted of a thinner CuO outer layer, a middle thicker Cu0.92Co2.08O4 layer and an inner Co3O4 layer after an oxidation treatment of 2 h at 800 °C in air. The three-layer oxide structure was transformed into a double-layer scale with a (Co,Cr,Cu,Mn,Fe)3O4 spinel outer layer and an inner Cr-rich oxide layer after an oxidation of 500 h at 800 °C in air. The CuCo coating enhanced the oxidation resistance of the alloy and served as a diffusion barrier against the outward migration of Cr elements. Meanwhile, the area specific resistance (ASR) of the scale for the CuCo coated alloy was significantly lower than that for the bare sample.  相似文献   

19.
To engineering high-efficient, sustainable and novel Pt-based composite system, a newly “Pt-oxide” based composites electrocatalyst of “CeO2 overlapped with nitrogen-doped carbon layer anchoring Pt nanoparticles” (PtCeO2@CN) has been fabricated. In comparison with Pt/C, the results exhibit that PtCeO2@CN possesses a preferable methanol tolerance ability, superior stability (30000 s degradation: 35% for PtCeO2@CN vs. 50% for Pt/C), and more positively the onset potential (16 mV) as well as half-wave potential (29 mV) towards oxygen reduction reaction. Further, the investigation shows that PtCeO2@CN has a certain selectivity with quasi-four electron pathway (n = 3.2–3.3 e?). This is attributed to the establishment of “nitrogen-doped carbon layer” structure, which heightens the conductivity of CeO2, further promotes electron transfer between Pt and CeO2, as well as strengthens the anchoring effect for Pt nanoparticles. Overall, this study would shed bright light to develop some effective Pt-oxide based composite electrocatalysts.  相似文献   

20.
To overcome the hydrogen-induced amorphization and phase disproportionation in the fast de-/hydrogenation of YFe2, the alloying of partial substituting Y with Zr was carried out to obtain Y1?xZrxFe2 (x = 0.1, 0.2, 0.3, 0.5) alloys. All YZrFe alloys remained single C15 Laves phase structure at states of as-annealed, hydrogenated and dehydrogenated. With the increasing of Zr content, the YZrFe alloys showed the decrease in the lattice constants and hydrogenation capacity, but the increase in the dehydrogenation capacity and dehydriding equilibrium pressure. The alloy Y0.9Zr0.1Fe2 showed maximum initial hydrogenation capacity of 1.87 wt% H, while the alloy Y0.5Zr0.5Fe2 showed highest desorption capacity of 1.26 wt% with obvious dehydriding plateau. Based on experiment analysis and first principle calculation of binding energy, the great improvement in the dehydriding thermodynamics for YZrFe alloys is attributed to the change in the unit cell volume, electron concentration and stability of hydrides due to the Zr substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号