首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field.  相似文献   

2.
Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF).This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O&M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO2 emissions, but it will operate during daytime only.  相似文献   

3.
Thermal energy storage improves the load stability and efficiency of solar thermal power plants by reducing fluctuations and intermittency inherent to solar radiation. This paper presents a numerical study on the transient response of packed bed latent heat thermal energy storage system in removing fluctuations in the heat transfer fluid (HTF) temperature during the charging and discharging period. The packed bed consisting of spherical shaped encapsulated phase change materials (PCMs) is integrated in an organic Rankine cycle-based solar thermal power plant for electricity generation. A comprehensive numerical model is developed using flow equations for HTF and two-temperature non-equilibrium energy equation for heat transfer, coupled with enthalpy method to account for phase change in PCM. Systematic parametric studies are performed to understand the effect of mass flow rate, inlet charging system, storage system dimension and encapsulation of the shell diameter on the dynamic behaviour of the storage system. The overall effectiveness and transient temperature difference in HTF temperature in a cycle are computed for different geometrical and operational parameters to evaluate the system performance. It is found that the ability of the latent heat thermal energy storage system to store and release energy is significantly improved by increasing mass flow rate and inlet charging temperature. The transient variation in the HTF temperature can be effectively reduced by decreasing porosity.  相似文献   

4.
Parabolic trough power plants are currently the most commercial systems for electricity generation. In this study, a transient numerical simulation of a solar power plant was developed by using direct steam generation (DSG) technology. In this system, condensate water from a Rankine cycle is pumped directly to solar parabolic trough collectors. The pressurized water is heated and evaporated before being superheated inside the solar collectors and directed back to the steam turbines, where the Rankine cycle is a reheated‐regenerative cycle. The plant performance with saturated steam production is compared with the performance of a superheated plant. A mathematical model of each system component is presented, with the solar power cycle modeled by the TRNSYS‐17 simulation program. Annual transient performance, including plant power and efficiency, is presented for both plants. As expected, the power of the superheated plant outperforms the saturated plant by approximately 45%, whereas the efficiency decreases by approximately 10%. Furthermore, the power of such plants is considerably improved under the weather of Makkah, 22.4°N, and it is approximately 40 MW for both the spring and autumn seasons. The annual generated energy is approximately 8062 MWh. The levelized electricity cost (LEC) was estimated for both the DSG and the corresponding synthetic oil plants. The DSG plant has an approximately 3% higher LEC than a synthetic oil plant with heat storage and an approximately 11.2% lower LEC than an oil plant if the plant has no storage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The term integrated solar combined-cycle (ISCC) has been used to define the combination of solar thermal energy into a natural gas combined-cycle (NGCC) power plant. Based on a detailed thermodynamic cycle model for a reference ISCC plant, the impact of solar addition is thoroughly evaluated for a wide range of input parameters such as solar thermal input and ambient temperature. It is shown that solar hybridization into an NGCC plant may give rise to a substantial benefit from a thermodynamic point of view. The work here also indicates that a significant solar contribution may be achieved in an ISCC plant, thus implying substantial fuel savings and environmental benefits.  相似文献   

6.
This paper describes the influence of the solar multiple on the annual performance of parabolic trough solar thermal power plants with direct steam generation (DSG). The reference system selected is a 50 MWe DSG power plant, with thermal storage and auxiliary natural gas-fired boiler. It is considered that both systems are necessary for an optimum coupling to the electricity grid. Although thermal storage is an opening issue for DSG technology, it gives an additional degree of freedom for plant performance optimization. Fossil hybridization is also a key element if a reliable electricity production must be guaranteed for a defined time span. Once the yearly parameters of the solar power plant are calculated, the economic analysis is performed, assessing the effect of the solar multiple in the levelized cost of electricity, as well as in the annual natural gas consumption.  相似文献   

7.
Renewable power (photovoltaic, solar thermal or wind) is inherently intermittent and fluctuating. If renewable power has to become a major source of base-load dispatchable power, electricity storage systems of multi-MW capacity and multi-hours duration are indispensable. An overview of the advanced energy storage systems to store electrical energy generated by renewable energy sources is presented along with climatic conditions and supply demand situation of power in Saudi Arabia. Based on the review, battery features needed for the storage of electricity generated from renewable energy sources are: low cost, high efficiency, long cycle life, mature technology, withstand high ambient temperatures, large power and energy capacities and environmentally benign. Although there are various commercially available electrical energy storage systems (EESS), no single storage system meets all the requirements for an ideal EESS. Each EESS has a suitable application range.  相似文献   

8.
Over the last 25 years solar power plants based on parabolic trough concentrators have been developed for the commercial power industry. On the other hand, in recent years, a way to harness the solar energy is to cogenerate through Concentrated Solar Power (CSP) technology coupled to an Organic Rankine Cycle (ORC) with potential applications to industrial processes. In this work we present a study of a small CSP plant coupled to an ORC with a novel configuration since useful energy is directly used to feed the power block and to charge the thermal storage. In order to analyze this novel configuration we consider a case study with cogeneration applied to textile industrial process at medium temperature. It turns out that this configuration reduces the size of the thermal storage disposal. The performance of the solar power plant was simulated with TRNSYS to emulate real operating conditions. We show the design, study and simulation results, including the production and efficiency curves for our load profile. Our results show that our system is a promising option for applications to medium temperature processes where electrical and heat generation is required.  相似文献   

9.
Exergetic analysis has become an integral part of thermodynamic assessment of any power generation system. Energy and exergy studies for power plants optimum design and for combined chemical industries received much attention recently. An Integrated Solar Combined Cycle System (ISCCS) is proposed as a means of integrating a parabolic trough solar thermal plant with modern combined cycle power plants. In this study attempt will be made to analyze the Integrated Solar Combined Cycle in Yazd, Iran using design plant data. Energy and exergy analysis for the solar field and combined cycle is carried out to assess the plant performance and pinpoint sites of primary exergy destruction. Exergy destruction throughout the plant is quantified and illustrated using an exergy flow diagram, and compared to the energy flow diagram. The causes of exergy destruction in the plant include: losses in combustor, collector, heat exchangers, and pump & turbines which accounts for 29.62, 8.69, 9.11 and 8% of the total exergy input to the plant, respectively. Exergetic efficiencies of the major plant components are determined in an attempt to assess their individual performances.  相似文献   

10.
Direct steam generation (DSG) is the process by which steam is directly produced in parabolic trough fields and supplied to a power block. This process simplifies parabolic trough plants and improves cost effectiveness by increasing the permissible temperature of the working fluid. Similar to all solar‐based technologies, thermal energy storage is needed to overcome the intermittent nature of solar. In the present work, an innovative DSG‐based parabolic trough collector (PTC) plant hybridized with a biomass boiler is proposed and analyzed in detail. Two additional configurations comprising indirect steam generation PTC plants were also analyzed to compare their energy and exergy performance. To consider a wide range of operation, the share of biomass input to the hybridized system is varied. Energy and exergy analyses of DSG are conducted and compared with an existing indirect steam generation PTC power plants such as Andasol. The analyses are conducted on a 50 MW regenerative reheat Rankine cycle. The results obtained indicate that the proposed DSG‐based PTC plant is able to increase the overall system efficiency by 3% in comparison with indirect steam generation when linked to a biomass boiler that supplies 50% of the energy.  相似文献   

11.
This paper describes gas turbine/solar trough hybrid designs that achieve a solar contribution greater than 50% and increase the solar-to-electric efficiency while reducing gas heat rate. Two conceptual designs are explored: (1) integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390 °C, and (2) integrating gas turbines with salt-HTF troughs running at 450 °C and including thermal energy storage (TES). The latter system is also representative of molten-salt power towers, although the power towers run at temperatures near 565 °C and would require selection of an appropriate gas turbine to provide waste heat at those temperatures. Using gas turbine waste heat to supplement the TES system provides operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant designs produce solar-derived electricity and gas-derived electricity at lower costs than either system operating alone.  相似文献   

12.
Saturated steam process with direct steam generating parabolic troughs   总被引:3,自引:0,他引:3  
M. Eck  E. Zarza 《Solar Energy》2006,80(11):1424-1433
The direct steam generation (DSG) in parabolic trough collectors is an attractive option regarding the economic improvement of parabolic trough technology for solar thermal electricity generation in the multi Megawatt range. The European DISS project has proven the feasibility of the direct steam generation under real solar conditions in more than 4000 operation hours. Within the European R&D project INDITEP the detailed engineering for a pre-commercial DSG solar thermal power plant with an electrical power of 5 MW is being performed. This small capacity was chosen to minimise the risk for potential investors.In regards to DSG solar thermal power plants, only steam cycles using superheated steam have been investigated so far. The paper will investigate the advantages, disadvantages, and design considerations of a steam cycle operated with saturated steam for the first time. For near term applications, saturated steam operated DSG plants might be an interesting alternative for power generation in the small capacity range due to some specific advantages:
• Simple set up of the collector field.
• Proven safe collector field operation.
• Higher thermal efficiency in the collector field.
Keywords: Solar thermal power plants; Direct steam generation; Parabolic trough; Saturated steam; System analysis  相似文献   

13.
Concentrated solar thermal power generation is becoming a very attractive renewable energy production system among all the different renewable options, as it has have a better potential for dispatchability. This dispatchability is inevitably linked with an efficient and cost-effective thermal storage system. Thus, of all components, thermal storage is a key one. However, it is also one of the less developed. Only a few plants in the world have tested high temperature thermal energy storage systems. In this paper, the different storage concepts are reviewed and classified. All materials considered in literature or plants are listed. And finally, modellization of such systems is reviewed.  相似文献   

14.
The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl26H2O was used as PCM in thermal energy storage with a melting temperature of 29 °C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18–23% of total daily thermal energy requirements of the greenhouse for 3–4 h, in comparison with the conventional heating device.  相似文献   

15.
Analysis and performance assessment of a solar driven hydrogen production plant running on an Mg–Cl cycle, are conducted through energy and exergy methods. The proposed system consists of (a) a concentrating solar power cycle with thermal energy storage, (b) a steam power plant with reheating and regeneration, and (c) a hybrid thermochemical Mg–Cl hydrogen production cycle. The results show that higher steam to magnesium molar ratios are required for full yield of reactants at the hydrolysis step. This ratio even increases at low temperatures, although lowering the highest temperatures appears to be more favorable for linking such a cycle to lower temperature energy sources. Reducing the maximum cycle temperature decreases the plant energy and exergy efficiencies and may cause some undesirable reactions and effects. The overall system energy and exergy efficiencies are found to be 18.8% and 19.9%, respectively, by considering a solar heat input. These efficiencies are improved to 26.9% and 40.7% when the heat absorbed by the molten salt is considered and used as a main energy input to the system. The highest exergy destruction rate occurs in the solar field which accounts for 79% of total exergy destruction of the integrated system.  相似文献   

16.
This paper presents a numerical investigation on the thermal performance of a solar latent heat storage unit composed of rectangular slabs combined with a flat-plate solar collector. The rectangular slabs of the storage unit are vertically arranged and filled with phase change material (PCM: RT50) dispersed with high conductive nanoparticles (Al2O3). A heat transfer fluid (HTF: water) goes flow in the solar collector and receives solar thermal energy form the absorber area, then circulates between the slabs to transfer heat by forced convection to nanoparticle-enhanced phase change material (NEPCM). A numerical model based on the finite volume method and the conservation equations was developed to model the heat transfer and flow processes in the storage unit. The developed model was validated by comparing the obtained results with the experimental, numerical and theoretical results published in the literature. The thermal performance of the investigated latent heat storage unit combined with the solar collector was evaluated under the meteorological data of a representative day of the month of July in Marrakesh city, Morocco. The effect of the dispersion of high conductive nanoparticles on the thermal behavior and storage performance was also evaluated and compared with the case of base PCM without additives.  相似文献   

17.
The renewable energy sources are often presented as ‘clean’ sources, not considering the environmental impacts related to their manufacture. The production of the renewable plants, like every production process, entails a consumption of energy and raw materials as well as the release of pollutants. Furthermore, the impacts related to some life cycle phases (as maintenance or installation) are sometimes neglected or not adequately investigated.The energy and the environmental performances of one of the most common renewable technologies have been studied: the solar thermal collector for sanitary warm water demand. A life cycle assessment (LCA) has been performed following the international standards of series ISO 14040. The aim is to trace the product's eco-profile that synthesises the main energy and environmental impacts related to the whole product's life cycle. The following phases have been investigated: production and deliver of energy and raw materials, production process, installation, maintenance, disposal and transports occurring during each step. The analysis is carried out on the basis of data directly collected in an Italian factory.  相似文献   

18.
Thermal efficiency, capacity factor, environmental considerations, investment, fuel and O&M2 costs are the main parameters for technical and economic assessment of solar power plants. This analysis has shown that the Integrated Solar Combined Cycle System with 67 MW e solar field (ISCCS-67) is the most suitable plan for the first solar power plant in Iran. The Levelized Energy Costs (LEC) of combined cycle and ISCCS-67 power plants would be equal if 49 million $ of ISCCS-67 capital cost supplied by the international environmental organizations such as Global Environmental Facilities (GEF) and World Bank. This study shows that an ISCCS-67 saves 59 million $ in fuel consumption and reduces about 2.4 million ton in CO2 emission during 30 years operating period. Increasing of steam turbine capacity by 50%, and 4% improvement in overall efficiency are other advantages of ISCCS-67 power plant. The LEC of ISCCS-67 is 10 and 33% lower than the combined cycle and gas turbine, respectively, at the same capacity factor with consideration of environmental costs.  相似文献   

19.
This paper proposes a new type of solar energy based power generation system using supercritical carbon dioxide and heat storage. The power generation cycle uses supercritical carbon dioxide as the working fluid and integrates the supercritical carbon dioxide cycle with an efficient high-temperature heat storage. The analysis shows that the new power generation system has significantly higher solar energy conversion efficiency in comparison to the conventional water-based (steam) system. At the same time, the heat storage not only overcomes the intermittent nature of solar energy but also improves the overall system efficiency. The study further reveals that the high temperatures and high pressures are favorable for solar energy storage and power generation. Moreover the expander and the heat storage/regenerator are found to be the key components that determine the overall system performance.  相似文献   

20.
INDITEP: The first pre-commercial DSG solar power plant   总被引:2,自引:0,他引:2  
This paper presents the conceptual design of the first solar power plant using Direct Steam Generation (DSG) in a parabolic-trough solar field. Experience and know-how in the DSG process acquired during the DISS project were applied in designing the solar field of this plant. The 5-MWe plant is composed of a DSG parabolic-trough solar field connected to a superheated steam Rankine power cycle. The solar field produces 410 °C/70-bar superheated steam. Detail engineering of this plant is currently underway within the framework of the INDITEP project, which is promoted by a German-Spanish consortium with the financial support of the European Commission (Contract No. ENK5-CT-2001-00540). The main design objective is to assure high operational flexibility and reliability. This is the reason why a robust superheated steam turbine has been selected, though the efficiency of its power block is modest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号