首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of liquid water and gaseous reactants through a gas diffusion layer (GDL) is one of the most important water management issues in a proton exchange membrane fuel cell (PEMFC). In this work, the liquid water breakthrough dynamics, characterized by the capillary pressure and water saturation, across GDLs with and without a microporous layer (MPL) are studied in an ex-situ setup which closely simulates a real fuel cell configuration and operating conditions. The results reveal that recurrent breakthroughs are observed for all of the GDL samples tested, indicating the presence of an intermittent water drainage mechanism in the GDL. This is accounted for by the breakdown and redevelopment of the continuous water paths during water drainage as demonstrated by Haines jumps. For GDL samples without MPL, a dynamic change of breakthrough locations is observed, which originates from the rearrangement of the water configuration in the GDL following the drainage. For GDL samples with MPL, no dynamic change of breakthrough location can be found and the water saturation is significantly lower than the samples without MPL. These results suggest that the MPL not only limits the number of water entry locations into the GDL (such that the water saturation is drastically reduced), but also stabilizes the water paths (or morphology). The effect of MPL on the two-phase flow dynamics in gas channels is also studied with multi-channel flow experiments. The most important result is that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. This is closely related to the larger number of water breakthrough locations through GDL without MPL, which promotes the formation of water film.  相似文献   

2.
In order to investigate the effect of capillary pressure on the transport of liquid water in the cathode gas diffusion layer (GDL) of a polymer electrolyte fuel cell, a one-dimensional steady-state mathematical model was developed, including the effect of temperature on the capillary pressure. Numerical results indicate that the liquid water saturation significantly increases with increases in the operating temperature of the fuel cell. An elevated operating temperature has an undesirable influence on the removal of liquid water inside the GDL. A reported peculiar phenomenon in which the flooding of the fuel cell under a high operating temperature and an over-saturated environment is more serious in a GDL combined with a micro-porous layer (MPL) than in a GDL without an MPL [Lim and Wang, Electrochim. Acta 49 (2004), 4149–4156] is explained based on the present analysis.  相似文献   

3.
The water management role of a microporous layer (MPL) in a polymer electrolyte membrane fuel cell (PEMFC) is demonstrated experimentally by visualizing the drainage behaviors of a non-wetting fluid through multiple porous layers. An intermediate layer inserted between a fine layer and a coarse layer is observed to reduce the number of (the non-wetting fluid) breakthrough sites towards the coarse layer by merging many transport paths. Then, the reduced number of the breakthrough sites decreases the non-wetting fluid saturation in the coarse layer by minimizing capillary fingering process. These results clearly demonstrate the water management role of an MPL: An MPL reduces the liquid water breakthrough into a gas diffusion layer (GDL) by merging many paths from a catalyst layer (CL), and thereby reduces the liquid water saturation in the GDL.  相似文献   

4.
Water management in a proton exchange membrane (PEM) fuel cell is one of the critical issues for improving fuel cell performance and durability, and water transport across the gas diffusion layer plays a key role in PEM fuel cell water management. In this work, we investigated the effects of polytetrafluoroethylene (PTFE) content and the application of a micro-porous layer (MPL) in the gas diffusion layer (GDL) on the water transport rate across the GDL. The results show that both PTFE and the MPL play a similar role of restraining water transport. The effects of different carbon loadings in the MPL on water transport were also investigated. The results demonstrate that the higher the carbon loading in the MPL, the more it reduces the water transport rate. Using the given cell hardware and components, the optimized operation conditions can be obtained based on a water balance analysis.  相似文献   

5.
The mass transport characteristics of a gas diffusion layer (GDL) predominantly affect the performance of a proton exchange membrane (PEM) fuel cell. However, studies examining the transient response related to the GDL are insufficient, although the dynamic behavior of a PEM fuel cell is an important issue. In this study, the effects of the design of a micro porous layer (MPL) on the transient response of a PEM fuel cell are investigated. The MPL slurry density and multiple functional layers are treated as the variable design parameter. The results show that the transient response is determined by the capillary pressure gradient through the GDL. The trade-off relation for the PEM fuel cell performance under low and high humidity conditions due to the hydrophobic GDL is mitigated by designing a reverse capillary pressure gradient in the MPL.  相似文献   

6.
In proton exchange membrane fuel cells (PEMFCs), a hydrophobic micro-porous layer (MPL) is usually placed between the catalyst layer (CL) and the conventional gas diffusion layer (GDL) to relieve the flooding. In this paper, a pore network model is developed to investigate how the MPL structure affects the liquid and oxygen transport properties of the bilayer gas diffusion material (GDM) consisting of fine MPL and coarse GDL. The regular three-dimensional pore network constructed to represent the bilayer GDM are composed of the cubic pores that are connected by the narrow throats of square cross section. Based on this model, the capillary pressure, liquid permeability, and oxygen effective diffusivity as a function of GDM liquid saturation are determined. Parameter studies are performed to elucidate the influences of MPL thickness and of MPL crack width. Also analyzed are the liquid distributions in different structural GDMs at the moment of breakthrough. The results reveal a liquid saturation jump at the MPL/GDL interface in the plain bilayer GDM, but a liquid saturation drop in the defective bilayer GDM.  相似文献   

7.
In proton exchange membrane fuel cell (PEMFC), a hydrophobic micro-porous layer (MPL) is usually placed between catalyst layer (CL) and gas diffusion layer (GDL) to reduce flooding. Recent experimental studies have demonstrated that liquid water saturation in GDL is drastically decreased in the presence of MPL. However, theoretical studies based on traditional continuum two-phase flow models suggest that MPL has no effect on liquid water distribution in GDL. In the present study, a pore network model with invasion percolation algorithm is developed and used to investigate the impacts of the presence of MPL on liquid water distribution in GDL from the viewpoint at the pore level. A uniform pressure and uniform flux boundary conditions are considered for liquid water entering the porous layer in PEMFC. The simulation results reveal that liquid water saturation in GDL is reduced in the presence of MPL, but the reduction depends on the condition of liquid water entering the porous layer in PEMFC.  相似文献   

8.
A two-dimensional two-phase steady state model of the cathode of a polymer electrolyte membrane fuel cell (PEMFC) is developed using unsaturated flow theory (UFT). A gas flow field, a gas diffusion layer (GDL), a microporous layers (MPL), a finite catalyst layer (CL), and a polymer membrane constitute the model domain. The flow of liquid water in the cathode flow channel is assumed to take place in the form of a mist. The CL is modeled using flooded spherical agglomerate characterization. Liquid water is considered in all the porous layers. For liquid water transport in the membrane, electro-osmotic drag and back diffusion are considered to be the dominating mechanisms. The void fraction in the CL is expressed in terms of practically achievable design parameters such as platinum loading, Nafion loading, CL thickness, and fraction of platinum on carbon. A number of sensitivity studies are conducted with the developed model. The optimum operating temperature of the cell is found to be 80-85 °C. The optimum porosity of the GDL for this cell is in the range of 0.7-0.8. A study by varying the design parameters of the CL shows that the cell performs better with 0.3-0.35 mg cm−2 of platinum and 25-30 wt% of ionomer loading at high current densities. The sensitivity study shows that a multi-variable optimization study can significantly improve the cell performance. Numerical simulations are performed to study the dependence of capillary pressure on liquid saturation using various correlations. The impact of the interface saturation on the cell performance is studied. Under certain operating conditions and for certain combination of materials in the GDL and CL, it is found that the presence of a MPL can deteriorate the performance especially at high current density.  相似文献   

9.
In this study, the effects of adding a microporous layer (MPL) as well as the impact of its physical properties on polymer electrolyte fuel cell (PEMFC) performance with serpentine flow channels were investigated. In addition, numerical simulations were performed to reveal the effect of relative humidity and operating temperature. It is indicated that adding an extra between the gas diffusion layer (GDL) and catalyst layer (CL), a discontinuity in the liquid saturation shows up at their interface because of differences in the wetting properties of the layers. In addition, results show that a higher MPL porosity causes the liquid water saturation to decrease and the cell performance is improved. A larger MPL thickness reduces the cell performance. The effects of MPL on temperature distribution and thermal transport of the membrane prove that the MPL in addition to being a water management layer also improves the thermal management of the PEMFC.  相似文献   

10.
Micro porous layer (MPL) is a carbon layer (~15 μm) that coated on the gas diffusion layer (GDL) to enhance the electrical conduction and membrane hydration of proton exchange membrane fuel cell (PEMFC). However, the liquid transport behavior from MPL to GDL and its impact on water management remain unclear. Thus, a three-dimensional volume of fluid (VOF) model is developed to investigate the effects of MPL crack properties on liquid water saturation, liquid pathway formation, and the two-phase mass transport mechanism in GDL. Firstly, a stochastic orientation method is used to reconstruct the fibrous structure of the GDL. After that, the liquid water saturation calculated from the numerical results agrees well with the experimental data. With considering the full morphology of the overlap between MPL and GDL, it's found that this overlap determines the preferred liquid emerging port of both MPL and GDL. Three crack design shapes in MPL are proposed on the base of the similarity crack formation processes of soil mud. In addition, the effects of crack shape, distance between cracks, and crack number on liquid water transport from MPL to GDL are investigated. It is found that the liquid water saturation of GDL increases with crack number and the distance between cracks, while presents little correlation to the crack shape. Hopefully, these results can help the development of PEMFC models without reconstructing full MPL morphology.  相似文献   

11.
Water management is an important issue for alkaline anion exchange membrane fuel cell (AAEMFC) due to its significant role in the energy conversion processes. In this study, a numerical model is developed to investigate the water transport in AAEMFC anode. The gas and liquid transport characteristics in the gas diffusion layer (GDL) and catalyst layer (CL) with different designs and under various operating conditions are discussed. The results show that the current density affects the liquid water distribution in anode most significantly, and the temperature is the second considerable factor. The stoichiometry ratio of the supplied reactant has insignificant effect on the liquid water transport in anode. The change of liquid water amount in anode with cathode relative humidity follows a similar trend with anode inlet relative humidity. Some numerical results are also explained with published experimental and modeling data with reasonable agreement.  相似文献   

12.
The dynamic behavior of liquid water transport through the gas diffusion layer (GDL) of the proton exchange membrane fuel cell is studied with an ex-situ approach. The liquid water breakthrough pressure is measured in the region between the capillary fingering and the stable displacement on the drainage phase diagram. The variables studied are GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. The liquid water breakthrough pressure is observed to increase with GDL thickness, GDL compression, and inclusion of the MPL. Furthermore, it has been observed that applying some amount of PTFE to an untreated GDL increases the breakthrough pressure but increasing the amount of PTFE content within the GDL shows minimal impact on the breakthrough pressure. For instance, the mean breakthrough pressures that have been measured for TGP-060 and for untreated (0 wt.% PTFE), 10 wt.% PTFE, and 27 wt.% PTFE were 3589 Pa, 5108 Pa, and 5284 Pa, respectively.  相似文献   

13.
In this paper, pore network simulations are carried out to explore the effects of micro porous layer (MPL) and its crack location on the liquid and oxygen transport in the gas diffusion material (GDM) of proton exchange membrane fuel cell (PEMFC). The constructed network is composed of cubic pores connected by throats of square cross section. The GDM is partially screened by the land, and the MPL is assumed to have a crack. When the MPL crack is considered under the land in the model, the predicted results agree with experimental findings regarding the effect of MPL on the liquid saturation and distribution in the GDM. This indicates that the liquid may prefer to flow through the MPL crack under the land. The role of MPL in the fuel cell performance is revealed to be dependent on the oxygen effective diffusivity of MPL and GDL. Therefore, caution should be taken before employing the MPL to improve the cell performance. Based on the present studies, some guidelines are gained for the GDM design and optimization.  相似文献   

14.
The effect of wettability on water transport dynamics in gas diffusion layer (GDL) is investigated by simulating water invasion in an initially gas-filled GDL using the multiphase free-energy lattice Boltzmann method (LBM). The results show that wettability plays a significant role on water saturation distribution in two-phase flow in the uniform wetting GDL. For highly hydrophobicity, the water transport falls in the regime of capillary fingering, while for neutral wettability, water transport exhibits the characteristic of stable displacement, although both processes are capillary force dominated flow with same capillary numbers. In addition, the introduction of hydrophilic paths in the GDL leads the water to flow through the hydrophilic pores preferentially. The resulting water saturation distributions show that the saturation in the GDL has little change after water breaks through the GDL, and further confirm that the selective introduction of hydrophilic passages in the GDL would facilitate the removal of liquid water more effectively, thus alleviating the flooding in catalyst layer (CL) and GDL. The LBM approach presented in this study provides an effective tool to investigate water transport phenomenon in the GDL at pore-scale level with wettability distribution taken into consideration.  相似文献   

15.
This study applied the pseudo-potential Lattice Boltzmann method (LBM) for investigating liquid water transport in the microporous layer (MPL) and gas diffusion layer (GDL) of polymer electrolyte fuel cell. The MPL and GDL reconstruction is performed by using a stochastic method. Unlike previous studies that examined the GDL as two distinct layers of hydrophilic and hydrophobic, this study considered the wettability heterogeneity. In the present study, some of the carbon fibers in the GDL are randomly considered hydrophilic. Moreover, liquid water transport in the compressed and uncompressed GDL with different hydrophilic fibers percentage are compared. The effect of hydrophilic fibers percentage and the compression ratio of the GDL on the liquid water saturation level, the steady-state time, and the formation and growth of droplets in the gas channel (GC) are investigated. The results indicated that more than 10% of hydrophilicity of the fibers lead to the formation of discontinuous water clusters. This phenomenon increased the steady-state time and water saturation level significantly. The simulation showed that compression increased the number of discontinuous water clusters in the GDL. The obtained results demonstrated that the hydrophilic fibers may have positive or negative effects on water transport in the GDL due to their location. In addition, this study indicated that for 10% of hydrophilic fibers with 10% compression, water saturation level and time required to reach steady-state decreased by 5.2% and 22% respectively compared to purely hydrophobic GDL.  相似文献   

16.
Water management in polymer electrolyte membrane (PEM) fuel cells is of importance due to its impact on the performance, durability and ultimately the cost of the cell. In the gas diffusion layer (GDL), liquid water has a direct effect on species and heat transport. The amount of liquid water in the GDL affects the relative permeability and capillary pressure, which govern the convective and diffusive transport of liquid water. Liquid water acts as a barrier to the diffusion of gases through the void region and facilitates in heat transfer. In this study, the full morphology model was used in order to investigate the effects of liquid water presence on the transport properties of the carbon paper GDL and examine the applicability of using various laws to estimate the transport properties in the presence of liquid water. The numerical results were compared against published experimental data. Further, the method of standard porosimetry was used to experimentally measure the effect of Teflon treatment on the capillary pressure of carbon paper. It was found that the addition of PTFE to the GDL results in the increase of capillary pressure; however, further increases to the PTFE loading did not result in additional changes to the capillary pressure.  相似文献   

17.
We developed an equivalent capillary model of a microscale fiber-fence structure to study the microscale evolution and transport of liquid in a porous media and to reveal the basic principles of water transport in gas diffusion layer (GDL). Analytical solutions using the model show that a positive hydraulic pressure is needed to drive the liquid water to penetrate through the porous GDL even consisting of the hydrophilic fibers. Several possible contributions for the water configuration, such as capillary pressure, gravity, vapor condensation, wettability and microstructures of the GDL, are discussed using the lattice Boltzmann method (LBM). It is found that the distribution manners of the fibers and the spatial mixed-wettability in the GDL also play an important role in the transport of liquid water.  相似文献   

18.
The primary removal of product water in proton exchange membrane (PEM) fuel cells is through the cathode gas diffusion layer (GDL) which necessitates the understanding of vapor and liquid transport of water through porous media. In this investigation, the effect of microporous layer (MPL) coatings, GDL thickness, and polytetrafluorethylene (PTFE) loading on the effective water vapor diffusion coefficient is studied. MRC Grafil, SGL Sigracet, and Toray TGP-H GDL samples are tested experimentally with and without MPL coatings and varying PTFE loadings. A dynamic diffusion test cell is developed to produce a water vapor concentration gradient across the GDL and induce diffusion mass transfer. Tests are conducted at ambient temperature and flow rates of 500, 625, and 750 sccm. MPL coatings and increasing levels of PTFE content introduce significant resistance to diffusion while thickness has negligible effects.  相似文献   

19.
Flooding of the membrane electrode assembly (MEA) and dehydrating of the polymer electrolyte membrane have been the key problems to be solved for polymer electrolyte membrane fuel cells (PEMFCs). So far, almost no papers published have focused on studies of the liquid water flux through differently structured gas diffusion layers (GDLs). For gas diffusion layers including structures of uniform porosity, changes in porosity (GDL with microporous layer (MPL)) and gradient change porosity, using a one-dimensional model, the liquid saturation distribution is analyzed based on the assumption of a fixed liquid water flux through the GDL. And then the liquid water flux through the GDL is calculated based on the assumption of a fixed liquid saturation difference between the interfaces of the catalyst layer/GDL and the GDL/gas channel. Our results show that under steady-state conditions, the liquid water flux through the GDL increases as contact angle and porosity increase and as the GDL thickness decreases. When a MPL is placed between the catalyst layer and the GDL, the liquid saturation is redistributed across the MPL and GDL. This improves the liquid water draining performance. The liquid water flux through the GDL increases as the MPL porosity increases and the MPL thickness decreases. When the total thickness of the GDL and MPL is kept constant and when the MPL is thinned to 3 μm, the liquid water flux increases considerably, i.e. flooding of MEA is difficult. A GDL with a gradient of porosity is more favorable for liquid water discharge from catalyst layer into the gas channel; for the GDLs with the same equivalent porosity, the larger the gradient is, the more easily the liquid water is discharged. Of the computed cases, a GDL with a linear porosity 0.4x + 0.4 is the best.  相似文献   

20.
Two-phase transport in the cathode gas diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) is studied with a porosity gradient in the GDL. The porosity gradient is formed by adding micro-porous layers (MPL) with different carbon loadings on the catalyst layer side and on the flow field side. The multiphase mixture model is employed and a direct numerical procedure is used to analyze the profiles of liquid water saturation and oxygen concentration across the GDL as well as the resulting activation and concentration losses. The results show that a gradient in porosity will benefit the removal rate of liquid water and also enhance the transport of oxygen through the cathode GDL. The present study provides a theoretical support for the suggestion that a GDL with porosity gradient will improve the cell performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号