首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The solid base catalyst KF/Ca–Al hydrotalcite was obtained from Ca–Al layered double hydroxides and successfully used in the transesterification of methanol with palm oil to produce biodiesel. With the load of KF, the activity of Ca–Al mixed-oxides had been improved much. For the mass ratio 80 wt.%(KF·6H2O to Ca–Al mixed-oxides) catalyst, under the optimal condition: 338 K, catalyst amount 5%(wt./wt. oil) and methanol/oil molar ratio 12:1, after 5 h reaction, the fatty acid methyl esters yield could reach 97.98%; for the mass ratio 100 wt.%(KF·6H2O to Ca–Al mixed-oxides) ones, under the same reaction condition, only needed 3 h to get the FAME yield of 99.74%, and even only reacted 1 h, the FAME yield could obtain 97.14%.  相似文献   

2.
The use of MgO impregnated with KOH as heterogeneous catalysts for the transesterification of mutton fat with methanol has been evaluated. The mutton fat (fat) with methanol (1:22 M ratio) at 65 °C showed > 98% conversion to biodiesel with 4 wt% of MgO–KOH-201 (MgO impregnated with 20 wt% of KOH) in 20 min. The reaction conditions optimized were; the amount of KOH impregnation (5–20 wt%), the amount of catalyst (1.5–4 wt%, catalyst/fat), the reaction temperature (45–65 °C), fat to methanol molar ratio (1:11–1:22) and the effect of addition of water/oleic acid/palmitic acid (upto 1 wt%). Although, transesterification of fresh fat (moisture content 0.02 wt% and free fatty acids 0.002 wt%) with methanol in the presence of KOH (homogenous catalyst) resulted in the complete conversion to biodiesel, but in the presence of additional 1 wt% of either free fatty acid or moisture content, formation of soap was observed. The MgO–KOH-20 catalyst was found to tolerate additional 1 wt% of either the moisture or FFAs in the fat.  相似文献   

3.
Nanometer magnetic solid base catalysts were prepared by loading CaO on Fe3O4 with Na2CO3 and NaOH as precipitator, respectively. The optimum conditions for preparation of this catalyst were investigated. The influence of the proportion of Ca2+ to Fe3O4 on the catalytic performance has been studied. The catalyst with highest catalytic activity has been obtained when the proportion of Ca2+ to Fe3O4 is 7:1; the catalytic activity of the catalyst calcined from Ca(OH)2 to Fe3O4 is better than that calcined from CaCO3 to Fe3O4; under the conditions of methanol/oil molar ratio of 15:1, catalyst dosage of 2 wt% and temperature of 70 °C, the biodiesel yield reaches to 95% in 80 min, even to 99% finally. The catalytic activity and recovery rate of the nanometer magnetic solid base catalysts are much better than those of CaO. Calcination temperature was determined by differential thermogravimetric analysis. Ca2Fe2O5, a kind of new metal multiple oxide, was found in the catalyst through X-ray diffraction. At the end, these catalysts were characterized by scanning electronic microscope (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM).  相似文献   

4.
ZSM5 zeolite was impregnated with different KOH loadings (15 wt.%, 25 wt.% and 35 wt.%) to prepare a series of KOH/ZSM5 catalysts. The catalysts were calcined at 500 °C for 3 h and then characterized by N2 adsorption–desorption and X-ray diffraction (XRD) techniques. The catalysts were tested in the transesterification reaction in a batch reactor at 60 °C and under atmospheric pressure. It was found that KOH/ZSM5 with 35 wt.% loading showed the best catalytic performance. The best reaction conditions in the presence of KOH/ZSM5 (35 wt.%) were determined while modifying the catalyst to oil ratio and the reaction time. The highest methyl ester yield (>95%) was obtained for a reaction time of 24 h, a catalyst to oil ratio of 18 wt.%, and a methanol to oil molar ratio of 12:1. The properties of produced biodiesel complied with the ASTM specifications. The catalytic stability test showed that 35KOH/ZSM5 was stable for 3 consecutive runs. Characterization of the spent catalyst indicated that a slight deactivation might be due to the leaching of potassium oxides active sites.  相似文献   

5.
Response surface methodology (RSM), with central composite rotatable design (CCRD), was used to explore optimum conditions for the transesterification of Moringa oleifera oil. Effects of four variables, reaction temperature (25–65 °C), reaction time (20–90 min), methanol/oil molar ratio (3:1–12:1) and catalyst concentration (0.25–1.25 wt.% KOH) were appraised. The quadratic term of methanol/oil molar ratio, catalyst concentration and reaction time while the interaction terms of methanol/oil molar ratio with reaction temperature and catalyst concentration, reaction time with catalyst concentration exhibited significant effects on the yield of Moringa oil methyl esters (MOMEs)/biodiesel, p < 0.0001 and p < 0.05, respectively. Transesterification under the optimum conditions ascertained presently by RSM: 6.4:1 methanol/oil molar ratio, 0.80% catalyst concentration, 55 °C reaction temperature and 71.08 min reaction time offered 94.30% MOMEs yield. The observed and predicted values of MOMEs yield showed a linear relationship. GLC analysis of MOMEs revealed oleic acid methyl ester, with contribution of 73.22%, as the principal component. Other methyl esters detected were of palmitic, stearic, behenic and arachidic acids. Thermal stability of MOMEs produced was evaluated by thermogravimetric curve. The fuel properties such as density, kinematic viscosity, lubricity, oxidative stability, higher heating value, cetane number and cloud point etc., of MOMEs were found to be within the ASTM D6751 and EN 14214 biodiesel standards.  相似文献   

6.
《Biomass & bioenergy》2007,31(8):563-568
Production of fatty acid methyl ester (FAME) from palm fatty acid distillate (PFAD) having high free fatty acids (FFA) was investigated in this work. Batch esterifications of PFAD were carried out to study the influence of: including reaction temperatures of 70–100 °C, molar ratios of methanol to PFAD of 0.4:1–12:1, quantity of catalysts of 0–5.502% (wt of sulfuric acid/wt of PFAD) and reaction times of 15–240 min. The optimum condition for the continuous esterification process (CSTR) was molar ratio of methanol to PFAD at 8:1 with 1.834 wt% of H2SO4 at 70 °C under its own pressure with a retention time of 60 min. The amount of FFA was reduced from 93 wt% to less than 2 wt% at the end of the esterification process. The FAME was purified by neutralization with 3 M sodium hydroxide in water solution at a reaction temperature of 80 °C for 15 min followed by transesterification process with 0.396 M sodium hydroxide in methanol solution at a reaction temperature of 65 °C for 15 min. The final FAME product met with the Thai biodiesel quality standard, and ASTM D6751-02.  相似文献   

7.
This work investigates the production of fatty acid methyl esters (FAME) from Jatropha curcas oil using a variety of heterogeneous catalysts: resins, zeolites, clays, hydrotalcites, aluminas and niobium oxide. For this purpose, a catalyst screening was first conducted in a batch reactor at the following operating conditions: oil to methanol molar ratio of 1:9, 6 h of reaction, 5 wt% catalyst, at 333 and 393 K. From the screening step, KSF clay and Amberlyst 15 catalysts were selected to carry out a 23 full factorial central composite rotatable design so as to elucidate the effects of process variables on FAME yield. The optimum reaction conditions for both catalysts were found to be oil to methanol molar ratio of 1:12, 5 wt% of catalyst, 433 K and 6 h of reaction with a FAME yield of about 70 wt%. A kinetic study was then experimentally performed and a semi-empirical model was built to represent the experimental data. Finally, catalyst re-utilization in five successive batch experiments was evaluated at the optimized conditions.  相似文献   

8.
This paper presents the study of the transesterification of palm oil via heterogeneous process using montmorillonite KSF as heterogeneous catalyst. This study was carried out using a design of experiment (DOE), specifically response surface methodology (RSM) based on four-variable central composite design (CCD) with α (alpha) = 2. The transesterification process variables were reaction temperature, x1 (50–190 °C), reaction period, x2 (60–300 min), methanol/oil ratio, x3 (4–12 mol mol?1) and amount of catalyst, x4 (1–5 wt%). It was found that the yield of palm oil fatty acid methyl esters (FAME) could reach up to 79.6% using the following reaction conditions: reaction temperature of 190 °C, reaction period at 180 min, ratio of methanol/oil at 8:1 mol mol?1 and amount of catalyst at 3%.  相似文献   

9.
Lithium impregnated calcium oxide has been prepared by wet impregnation method in nano particle form as supported by powder X-ray diffraction and transmission electron microscopy. Basic strength of the same was measured by Hammett indicators. Calcium oxide impregnated with 1.75 wt% of lithium was used as solid catalyst for the transesterification karanja and jatropha oil, containing 3.4 and 8.3 wt% of free fatty acids, respectively. The reaction parameters, viz., reaction temperature, alcohol to oil molar ratio, free fatty acid contents, amount of catalyst and amount of impregnated lithium ion in calcium oxide support, have been studied to establish the most suitable condition for the transesterification reaction. The complete transesterification of karanja and jatropha oils was achieved in 1 and 2 h, respectively, at 65 °C, utilizing 12:1 molar ratio of methanol to oil and 5 wt% (catalyst/oil, w/w) of catalyst. Few physicochemical properties of the prepared biodiesel samples have been studied and compared with standard values.  相似文献   

10.
Novel mixed metal oxide catalyst Ca3.5xZr0.5yAlxO3 was synthesized through the coprecipitation of metal hydroxides. The textural, morphological, and surface properties of the synthesized catalysts were characterized via Brunauer–Emmett–Teller method, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy. The catalytic performance of the as-synthesized catalyst series was evaluated during the transesterification of cooking palm oil with methanol to produce fatty acid methyl esters (FAME). The influence of different parameters, including the calcination temperature (300–700 °C), methanol to oil molar ratio (6:1–25:1), catalyst amount (0.5–6.5 wt%), reaction time (0.5–12 h) and temperature (70–180 °C), on the process was thoroughly investigated. The metal oxide composite catalyst with a Ca:Zr ratio of 7:1 showed good catalytic activity toward methyl esters. Over 87% of FAME content was obtained when the methanol to oil molar ratio was 12:1, reaction temperature 150 °C, reaction time 5 h and 2.5 wt% of catalyst loading. The catalyst could also be reused for over four cycles.  相似文献   

11.
The present study employed non-catalytic supercritical methanol technology to produce biodiesel from palm oil. The research was carried out in a batch-type tube reactor and heated beyond supercritical temperature and pressure of methanol, which are at 239 °C and 8.1 MPa respectively. The effects of temperature, reaction time and molar ratio of methanol to palm oil on the yield of fatty acid methyl esters (FAME) or biodiesel were investigated. The results obtained showed that non-catalytic supercritical methanol technology only required a mere 20 min reaction time to produce more than 70% yield of FAME. Compared to conventional catalytic methods, which required at least 1 h reaction time to obtain similar yield, supercritical methanol technology has been shown to be superior in terms of time and energy consumption. Apart from the shorter reaction time, it was found that separation and purification of the products were simpler since no catalyst is involved in the process. Hence, formation of side products such as soap in catalytic reactions does not occur in the supercritical methanol method.  相似文献   

12.
《Journal of power sources》2005,145(2):659-666
Oxidative steam reforming of ethanol for hydrogen production in order to feed a solid polymer fuel cell (SPFC) has been studied over several catalysts at on board conditions (a molar ratio of H2O/EtOH and of O2/EtOH equal to 1.6 and 0.68 respectively) and a reforming temperature between 923 and 1073 K. Two Ni (11 and 20 wt.%)/Al2O3 catalysts and five bimetallic catalysts, all of them supported on Al2O3, were tested. The bimetallic catalysts were Ni (approximately 20 wt.%) based catalysts doped with Cr (0.65 wt.%), Fe (0.6 wt.%), Zn (0.7 wt.%) or Cu (0.6 and 3.1 wt.%). The results in terms of H2 production and CO2/COx ratio obtained over Ni-based catalysts supported on Al2O3 are compared with those obtained over Ni–Cu/SiO2 and Rh/Al2O3 catalysts reported in our previous works. Tendencies of the product selectivities are analyzed in the light of the reaction network proposed.  相似文献   

13.
The effect of molar ratio of methanol to oil, temperature and space velocity (SV) on pre-esterification of Tung oil was carried out in pilot-scale fixed bed reactor, with solid acid catalysts. The molar ratio results showed the maximum acid value reduction efficiency (90.21%) was obtained at the molar ratio of 8:1, the acid value decreased sharply to 0.70 g kg?1 of KOH. And esterification reaction attained balance when space velocity was enough, so 0.029 h?1 was optimal space velocity. Furthermore, activity of reactant and rate of reaction increase with temperature increased, and the maximum conversion was achieved at 65 °C, the acid value of Tung oil could be reduced to 1.4 g kg?1 of KOH.  相似文献   

14.
In this paper, the effects of strong base (KOH) addition on the catalytic performances of Ni/Al2O3 catalysts in acetic acid steam reforming for hydrogen generation was investigated. The addition of KOH drastically changed the physiochemical property and catalytic performances of the nickel–based catalysts. KOH reacted with γ–Al2O3 during calcination, forming ɑ–Al2O3 with Al(OH)3 as a reaction intermediate, which led to reconstruction of the porous structure, merge of small pores, decreased specific area and sintering of nickel. Most importantly, the catalytic activity of nickel–based catalysts were significantly enhanced by the addition KOH, especially the ones with low nickel loading. There are almost no active of 1 wt% Ni/Al2O3 catalyst for steam reforming of acetic acid, while, with adding 5 wt % KOH, activity of the catalyst matched that of 20 wt% Ni/Al2O3. In–situ DRIFTS study showed the involvement of the reactive intermediates including CH3, CH2, CO, COO, COC, CC and absorbed CO2 in acetic acid steam reforming. The Ni/Al2O3 catalyst with low nickel loading had insufficient metallic nickel to gasify these reactive intermediates. The presence KOH effectively aided gasification of the reactive intermediates, and thus significantly promoted the catalytic activity. In addition, the KOH with varied loading significantly affect formation of catalytic coke and polymeric coke formed during the reforming reaction.  相似文献   

15.
Poly(vinylidene fluoride) grafted polystyrene sulfonated acid (PVDF-g-PSSA) membranes doped with different amount of Al2O3 (PVDF/Al2O3-g-PSSA) were prepared based on the solution-grafting technique. The microstructure of the membranes was characterized by IR-spectra and scanning electron microscope (SEM). The thermal stability was measured by thermal gravity analysis (TGA). The degree of grafting, water-uptake, proton conductivity and methanol permeability were measured. The results show that the PVDF-g-PSSA membrane doped with 10% Al2O3 has a lower methanol permeability of 6.6 × 10−8 cm2 s−1, which is almost one-fortieth of that of Nafion-117, and this membrane has moderate proton conductivity of 4.5 × 10−2 S cm−1. Tests on cells show that a DMFC with the PVDF/10%Al2O3-g-PSSA has a better performance than Nafion-117. Although Al2O3 has some influence on the stability of the membrane, it can still be used in direct methanol fuel cells in the moderate temperature.  相似文献   

16.
Al2O3–ZrO2 (AZ) xerogel supports prepared by a sol-gel method were calcined at various temperatures. Ni/Al2O3–ZrO2 (Ni/AZ) catalysts were then prepared by an impregnation method for use in hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of calcination temperature of AZ supports on the catalytic performance of Ni/AZ catalysts in the steam reforming of LNG was investigated. Crystalline phase of AZ supports was transformed in the sequence of amorphous γ-Al2O3 and amorphous ZrO2  θ-Al2O3 and tetragonal ZrO2   + α)-Al2O3 and (tetragonal + monoclinic) ZrO2  α-Al2O3 and (tetragonal + monoclinic) ZrO2 with increasing calcination temperature from 700 to 1300 °C. Nickel oxide species were strongly bound to γ-Al2O3 and θ-Al2O3 in the Ni/AZ catalysts through the formation of solid solution. In the steam reforming of LNG, both LNG conversion and hydrogen composition in dry gas showed volcano-shaped curves with respect to calcination temperature of AZ supports. Nickel surface area of Ni/AZ catalysts was well correlated with catalytic performance of the catalysts. Among the catalysts tested, Ni/AZ1000 (nickel catalyst supported on AZ support that had been calcined at 1000 °C) with the highest nickel surface area showed the best catalytic performance. Well-developed and pure tetragonal phase of ZrO2 in the AZ1000 support played an important role in the adsorption of steam and the subsequent spillover of steam from the support to the active nickel.  相似文献   

17.
《Journal of power sources》2005,145(2):702-706
An integrated microchannel methanol processor was developed by assembling unit reactors, which were fabricated by stacking and bonding microchannel patterned stainless steel plates, including fuel vaporizer, heat exchanger, catalytic combustor and steam reformer. Commercially available Cu/ZnO/Al2O3 catalyst was coated inside the microchannel of the unit reactor for steam reforming. Pt/Al2O3 pellets prepared by ‘incipient wetness’ were filled in the cavity reactor for catalytic combustion. Those unit reactors were integrated to develop the fuel processor and operated at different reaction conditions to optimize the reactor performance, including methanol steam reformer and methanol catalytic combustor. The optimized fuel processor has the dimensions of 60 mm × 40 mm × 30 mm, and produced 450sccm reformed gas containing 73.3% H2, 24.5% CO2 and 2.2% CO at 230–260 °C which can produce power output of 59 Wt.  相似文献   

18.
This paper presents an assessment of the productive efficiency of an advanced biodiesel plant in Japan using Data Envelopment Analysis (DEA). The empirical analysis uses monthly input data (waste cooking oil, methanol, potassium hydroxide, power consumption, and the truck diesel fuel used for the procurement of waste cooking oil) and output data (biodiesel) of a biodiesel fuel plant for August 2008–July 2010. The results of this study show that the production activity with the lowest cost on the biodiesel production possibility frontier occurred in March 2010 (production activity used 1.41 kL of waste cooking oil, 0.18 kL of MeOH, 16.33 kg of KOH, and 5.45 kW h of power), and the unit production cost in that month was 18,517 yen/kL. Comparing this efficient production cost to the mean unit production cost on the production possibility frontier at 19,712 yen/kL, revealed that the cost of producing 1 kL of biodiesel could be reduced by as much as 1195 yen. We also find that the efficiency improvement will contribute to decreasing the cost ratio (cost per sale) of the biodiesel production by approximately 1% during the study period (24 months) between August 2008 and July 2010.  相似文献   

19.
To maximize the production of biodiesel from soybean soapstock, the effects of water on the esterification of high-FFA (free fatty acid) oils were investigated. Oleic acid and high acid acid oil (HAAO) were esterified by reaction with methanol in the presence of Amberlyst-15 as a heterogeneous catalyst or sulfuric acid as a homogeneous catalyst. The yield of fatty acid methyl ester (FAME) was studied at oil to methanol molar ratios of 1:3 and 1:6 and reaction temperatures of 60 and 80 °C. The rate of esterification of oleic acid significantly decreased as the initial water content increased to 20% of the oil. The activity of Amberlyst-15 decreased more rapidly than that of sulfuric acid, due to the direct poisoning of acid sites by water. Esterification using sulfuric acid was not affected by water until there was a 5% water addition at a 1:6 molar ratio of oil to methanol. FAME content of HAAO prepared from soapstock rapidly increased for the first 30 min of esterification. Following the 30-min mark, the rate of FAME production decreased significantly due to the accumulation of water. When methanol and Amberlyst-15 were removed from the HAAO after 30 min of esterification and fresh methanol and a catalyst were added, the time required to reach 85% FAME content was reduced from 6 h to 1.8 h.  相似文献   

20.
The CO removal with preferential CO oxidation (PROX) over an industrial 0.5% Ru/Al2O3 catalyst from simulated reformates was examined and evaluated through considering its simultaneously involved oxidation and methanation reactions. It was found that the CO removal was fully due to the preferential oxidation of CO until 383 K. Over this temperature, the simultaneous CO methanation was started to make a contribution, which compensated for the decrease in the removal due to the decreased selectivity of PROX at higher temperatures. This consequently kept the effluent CO content as well as the overall selectivity estimated as the ratio of the removed CO amount over the sum of the consumed O2 and formed CH4 amounts from apparently increasing with raising reaction temperature from 383 to 443 K when the CO2 methanation was yet not fully started. At these temperatures the tested catalyst enabled the initial CO content of up to 1.0 vol.% to be removed to several tens of ppm at an overall selectivity of about 0.4 from simulated reformates containing 70 vol.% H2, 30 vol.% CO2 and with steam of up to 0.45 (volume) of dry gas. Varying space velocity in less than 9000 h−1 did not much change the stated overall selectivity. From the viewpoint of CO removal the article thus concluded that the methanation activity of the tested Ru/Al2O3 greatly extended its working temperatures for PROX, demonstrating actually a feasible way to formulate PROX catalysts that enable broad windows of suitable working temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号