首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
以去离子水为工质,对尺寸为720 mm×250 mm×3.5 mm的单面电加热竖直矩形窄通道内饱和沸腾起始点进行实验研究。分析了加热热流密度、工质进口温度和质量流量对饱和沸腾起始点位置及饱和沸腾起始点处壁面过热度的影响。在已有饱和沸腾起始点预测关联式的基础上,对实验数据进行非线性回归分析,得到适用于单面加热矩形窄通道饱和沸腾起始点的新关联式。结果表明:新拟合的关联式预测值与实验值的平均相对误差为17.63%,能很好的预测常压、低加热热流密度与低流速条件下的饱和沸腾起始点处壁面过热度与热流密度的关系。  相似文献   

2.
垂直矩形窄缝内的过冷流动沸腾换热性能   总被引:1,自引:0,他引:1  
用高速摄像等方法研究了有压模化介质在单一垂直矩形窄缝流道内的气泡形态和传热情况 ,发现窄缝流动沸腾换热强化的原因在于流道尺寸较小 ,气泡的形状发生变化 ,增加了界面体积浓度 ,并强化了对加热面附近的扰动 ,使换热有所强化。通过与实际测量的壁温数据进行比较 ,发现用于计算大流道和池过冷沸腾换热的 Rohsenow关系式预测窄流道内高热流密度下的过冷流动沸腾换热的误差不大 ,但对于较低热流密度下的过冷流动沸腾时误差较大 ;通过最小二乘法对 Rohsenow关系式进行修正后 ,误差低于± 2 5 %。  相似文献   

3.
为了明确竖直矩形窄通道内各阶段流动沸腾的换热特性,优化换热器性能,以去离子水为工质,对尺寸为720 mm×250 mm×3.5 mm的单面电加热竖直矩形窄通道内的流动沸腾换热进行实验研究,分析了质流密度、进口温度、热流密度对流动沸腾局部换热特性的影响。并在已有流动沸腾传热关联式的基础上,对实验数据进行非线性回归分析,得到适用于实验工况下的新流动沸腾传热关联式。结果表明:质流密度增大对流动沸腾段换热特性有强化作用,对核态沸腾段换热特性有削弱作用;热流密度对核态沸腾影响剧烈,但对流动沸腾的影响不明显;入口温度越高,流体会越早进入过冷沸腾阶段,但对局部传热系数的影响不明显;新流动沸腾传热关联式与实验值的平均相对误差为23.87%,其中74.19%的预测值在±25%内,83.87%的预测值在±50%以内,能很好地预测本实验工况下矩形窄通道内流动沸腾的局部传热系数。  相似文献   

4.
对高温平板滞止区内饱和液体的圆形喷流冲击沸腾的临界热流密度进行了系统的稳态实验研究。考察了不同液体、流速和喷流直径等系统条件对喷流沸腾临界热流密度的影响。建立了一个预示临界热流密度的半理论半经验型方程,其基本形式采用过去的研究结果,方程系数由本研究的实验数据拟合得到。研究结果证明,饱和液体喷流冲击沸腾的临界热流密度取决于液体物性、滞止冲击速度和喷流直径。本研究得到的半理论半经验公式在广泛的实验范围内能很好的预示喷流沸腾的临界热流密度。  相似文献   

5.
多孔介质可以强化相变传热,被广泛应用到电子器件散热中。热管依靠毛细芯孔隙内沸腾和凝结形成热质快速迁移的驱动,实现高密度和高效传热。薄层多孔层内沸腾时液体回流特性研究对提高热管传热效率、热流密度及寿命意义重大。通过不同多孔介质在不同液位下的池沸腾实验,获得了薄层多孔表面在较高热流密度下沸腾时的气泡特性和沸腾曲线,并结合毛细理论分析多孔表面的回液特性。实验结果表明,高热流密度下毛细回流占主导作用,较小的有效毛细半径和较大的渗透率有利于液体回流。  相似文献   

6.
外加电场强化苯自然对流和沸腾换热的试验研究   总被引:1,自引:0,他引:1  
对沉浸在非极性有机液体工质苯中的平板表面自然对流和沸腾换热的外加电场强化进行了试验,得出了自然对流和沸腾换热的换热系数、强化效果与电场电压、热流密度的关系。试验数据表明外加电场对平板表面苯的自然对流换热和沸腾换热都有一定的强化效果,但外加电场对平板表面苯自然对流换热的强化效果明显好于对沸腾换热的强化效果;且平板表面苯的自然对流换热的强化效果与试验所给定的热流密度无关,而外加电场对平板表面苯的沸腾换热的强化效果随热流密度的增大而减弱。  相似文献   

7.
窄空间只有在间距小于汽泡脱离直径时,对沸腾传热强化才有比较显的效果。窄空间沸腾强化传热的机理在于较大的泡底微层加速了蒸发传热和窄空间中被加热的液体周期性地与池液进行容积交换。水平圆盘窄空间中的汽泡生长分为性质完全不同的自由生长期和抑制长大期;在一个周期内,加热面的总传热量等于壁面传导给窄空间液体的热量与通过合体泡底微层蒸发潜热之和。在对圆形水平窄空间的沸腾传热的现象和机理进行分析的基础上,提出了窄空间的沸腾换热过程的数理模型;进而对窄空间沸腾的本质规律在理论上进行了初步探索,并得到分析解。理论计算结果与实验数据比较表明,该分析解适合于中低壁面过热度的情形。由于问题的复杂性,该模型仍需不断完善。  相似文献   

8.
采用数值模拟的方法对垂直下降管内液膜沸腾蒸发流动和传热特性进行研究。分析入口雷诺数Re和热流密度的耦合作用对液膜流动和传热的影响,结果表明:壁面生成的汽泡呈现液滴状;大汽泡表面分割、脱离出小汽泡;汽泡生成、脱离强化了沸腾传热效率;热流密度越大,液膜表面的稳定性越差;Re的提高能够增强相界面稳定性;降膜沸腾传热方式的不同对传热系数影响很大;在计算工况范围内,绘制出传热模态分布图,为工程应用提供基础。  相似文献   

9.
分别在光滑及波形结构的铜表面上对水和乙醇进行饱和池沸腾实验,观测了临界热流密度(CHF)下临界波长的变化趋势,并分析了表面结构对沸腾传热系数及CHF的影响。实验验证了光滑表面上,临界波长随工质的不同而变化,继而影响CHF,其实验值与经典的临界波长及临界热流密度理论一致。而粗糙表面上的乙醇沸腾实验进一步发现,波形结构可以减小临界波长,从而有效提高CHF,其影响规律与相关文献的理论模型较为符合。  相似文献   

10.
采用两步电镀法,在改变电流密度的情况下制备出具有不同微纳结构和润湿特性的A、B两个表面,并应用于低液位饱和池沸腾的实验研究中。通过与铜表面对比,发现两个表面在低热流密度情况下,传热系数要高于铜表面,但液位降低时传热系数提升幅度较小,原因在于铜表面沸腾气泡较大,液位降低气泡脱离有很大影响,而表面A、B沸腾气泡较小,液位降低主要对气泡扰动产生影响;当热流密度增大后,两个微纳结构表面气泡聚合严重,传热系数要低于铜表面,而且三个表面在高热流密度下,液位降低提升传热系数的幅度都有所降低。  相似文献   

11.
Much progress has been made in high‐performance electronic chips, the miniaturization of electronic circuits and other compact systems recently, which brings about a great demand for developing efficient heat removal techniques to accommodate these high heat fluxes. With this objective in mind, experiments were carried out on five kinds of test elements with distilled water and ethanol as working liquids. The test elements used in these experiments consisted of five parallel discs with diameters varying from 5 mm to 40 mm. The experiments were performed with the discs oriented horizontally and uniform heat fluxes applied at the bottom surfaces. The influence of narrow spacing, space size, working liquid property, and heat flux on boiling heat transfer performance in narrow spaces has been investigated. Experimental results showed that the boiling heat transfer coefficient of a narrow space was 3 to 6 times higher than that of pool boiling when the narrow space size and heat flux combine adequately, but the critical heat flux was lower than that of pool boiling. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(5): 307–315, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20017  相似文献   

12.
以蒸馏水为工质,在常压下,对间隙为1mm的环形狭缝通道中的流动传热进行了实验研究。分别将狭缝通道中的单相强制对流和过冷沸腾的实验数据与传统的Dittus-Boelter型关系式的计算结果进行了比较。通过分析狭缝通道中流动沸腾的传热特性认为,过冷沸腾传热比单相强制对流传热加强;质量流速对狭缝通道中的流动沸腾传热有较大影响。  相似文献   

13.
M. Gao  Y. Cao 《传热工程》2013,34(3):57-65
To achieve a high heat-flux level and reduce manufacturing costs associated with conventional heat pipes, the concept of network heat spreaders employing a boiling heat-transfer mechanism in a narrow space had been proposed, and several flat-plate wickless heat spreaders had been designed and fabricated. The heat spreaders had been tested under different working conditions and orientations relative to gravity with very good results. The previously tested network heat spreaders, however, were based on plates with a relatively large size for general heat spreading purposes. In the present study, network heat spreaders with overall dimensions of 78 2 62 2 3.2 mm are designed and fabricated. Spreaders of this size are intended for use as heat sinks of high-power electronic components. External cooling fins are attached to enhance air-cooling heat transfer rate. The network heat spreaders are tested under various working conditions with water as the working fluid. The maximum heat input rate achieved is about 150 W with a corresponding heat flux of 60 W/cm 2 . Compared to the performance of a solid copper plate having the same overall size as the spreader, the maximum temperature difference over the surface is reduced from about 32°C to 3.3°C. The heat transfer performance of the spreader is also largely dependent on the filling ratio of the working fluid and the boiling heat transfer in the narrow space. For these reasons, boiling heat transfer mechanisms in a narrow space are analyzed, and a spreader design that would improve the performance in a horizontal position is described.  相似文献   

14.
INTanDUCTI0NBoilingheattransferandcriticalheatflux(CHF)inaconfinednarrowspacehavebeenstudiedexperi-melltallybyanumberofinvestigatorsinthepastfewdecades.However,thereisnoanypopularlyacceptedmodelintheheattransferinnarrowspaceboiling,althoughsomepopularknowledgeabouttheboilingheattransferinthenarrowspacehavebeenacceptedbymanyresearchers.Theknowledgecanbecon-cludedasthatthenucleateboilingheattransferisenhancedatlowheatfluxregionanddeterioratedathighheatfiuxregi0nespeciallyatCHF.Theenhanceme…  相似文献   

15.
Experiments are conducted here to investigate how the channel size affects the subcooled flow boiling heat transfer and associated bubble characteristics of refrigerant R-134a in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. From the measured boiling curves, the temperature undershoot at ONB is found to be relatively significant for the subcooled flow boiling of R-134a in the duct. The R-134a subcooled flow boiling heat transfer coefficient increases with a reduction in the gap size, but decreases with an increase in the inlet liquid subcooling. Besides, raising the imposed heat flux can cause a substantial increase in the subcooled boiling heat transfer coefficient. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are small in the narrow duct. Visualization of the subcooled flow boiling processes reveals that the bubbles are suppressed to become smaller and less dense by raising the refrigerant mass flux and inlet subcooling. Moreover, raising the imposed heat flux significantly increases the bubble population, coalescence and departure frequency. The increase in the bubble departure frequency by reducing the duct size is due to the rising wall shear stress of the liquid flow, and at a high imposed heat flux many bubbles generated from the cavities on the heating surface tend to merge together to form big bubbles. Correlation for the present subcooled flow boiling heat transfer data of R-134a in the narrow annular duct is proposed. Additionally, the present data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

16.
Molecular dynamics simulation was performed to investigate pool boiling of nanofluids on the metal wall. Nanoparticles were placed near the wall. Results showed that with the addition of nanoparticles the fluid temperature, net evaporation number and heat flux were increased, indicating that the boiling heat transfer was enhanced. In addition, the nanoparticles were able to move around the wall disorderly but did not move with the fluid. The effects of heated temperature and nanoparticle size on the boiling heat transfer were also investigated. By increasing heated temperature and nanoparticle size, the boiling heat transfer enhancement increased.  相似文献   

17.
The heat transfer of pool boiling in bead packed porous layers was experimentally investigated to analyze the effects of the bead material, bead diameter and the layer number of the porous bed on the transport of flux and the heat transfer coefficients. The glass and copper bead, the bead sizes of 4 mm and 6 mm as well as the bead packed porous structures ranging from one to three layers were chosen in the experiments. The pool boiling heat transfer in the bead packed porous structures and that on the plain surface were compared to analyze the enhancement of pool boiling heat transfer while the bead packed porous layers were employed. The maximum relative error between the collected experimental data of the pure water on a plain surface and the theoretical prediction of pool boiling using the Rohsenow correlation was less than 12%. Besides, the boiling bubble generation, integration and departure have a great effect on the pool boiling and were recorded with a camera in the bead stacked porous structures of the different layers and materials at different heat flux. All these results should be taken into account for the promotion and application of bead packed porous structures in pool boiling to enhance the heat transfer.  相似文献   

18.
An experiment on pool boiling in methanol was performed for a case in which the boiling space was controlled by an interference plate with many holes. The narrow space, 0.12 mm in thickness, between the heat transfer surface and the interference plate was hermetically sealed at the perimeter. Therefore, the vapor and liquid were only exchanged through the holes in the interference plate. The degree of superheat at the onset of boiling was 0.7 K without overshoot at 10‐mm plate thickness, 1‐mm hole diameter, and 3.85‐mm hole pitch. The critical heat flux obtained was the same value without the interference plate mentioned above. The interference plate disturbed free convection and a superheat layer was provided under small heat flux on the heat transfer surface. The critical bubble diameter for the onset of boiling was decreased as the temperature of the superheat layer was increased. Thus, the degree of superheat at the onset of boiling was decreased. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(7): 462–471, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20028  相似文献   

19.
In desalinization devices and some heat exchangers making use of low-quality heat energy, both the wall temperature and the heat flux of the heated tubes are generally quite low, hence cannot cause boiling in flooded-type tube bundle evaporators with a large tube spacing. But when the tube spacing is quite small, incipient boiling can occur in the restricted space and results in higher heat transfer than that in a falling-film evaporator or during pool boiling at the same heat flux. This study experimentally investigates the effects of the tube spacing, the positions of tubes, and the salt-water concentration on bundle boiling heat transfer of salt water in the restricted space of the compact tube bundle evaporator under atmospheric pressure. The experimental results provide a restricted space boiling database for salt water in the compact tube bundle. Of particular importance is information concerning the influences of the tube spacing of the tube bundle and the concentration of salt water in desalination evaporators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号