首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed the solar chemical reactor technology to effect the endothermic calcination reaction CaCO3(s) → CaO(s) + CO2(g) at 1200–1400 K. The indirect heating 10 kWth multi-tube rotary kiln prototype processed 1–5 mm limestone particles, producing high purity lime that is not contaminated with combustion by-products. The quality of the solar produced quicklime meets highest industrial standards in terms of reactivity (low, medium, and high) and degree of calcination (exceeding 98%). The reactor’s efficiency, defined as the enthalpy of the calcination reaction at ambient temperature (3184 kJ kg−1) divided by the solar energy input, reached 30–35% for quicklime production rates up to 4 kg h−1. The solar lime reactor prototype operated reliably for more than 100 h at solar flux inputs of about 2000 kW m−2, withstanding the thermal shocks that occur in solar high temperature applications. By substituting concentrated solar energy for fossil fuels as the source of process heat, one can reduce by 20% the CO2 emissions in a state-of-the-art lime plant and by 40% in a conventional cement plant. The cost of solar lime produced in a 20 MWth industrial solar calcination plant is estimated in the range 131–158 $/t, i.e. about 2–3 times the current selling price of conventional lime.  相似文献   

2.
Hydrogen production using the Cristina process coupled to a dedicated central receiver solar system has been studied. The Cristina process was originally conceived and developed at the Joint Research Center of the European Communities in Ispra to decompose the sulfuric acid and produce the sulfur dioxide necessary for hydrogen production. In the present study, the process has been adopted to an intermittently operating solar heat source to produce the sulfur dioxide during sunshine hours and operate in reverse as a sulfuric acid synthesis process at a required rate to produce high temperature heat during night operation by using a small part of the stored sulfur dioxide. In this manner, the chemical process is operated continuously, hence, thermal inertia and start-up problems have been eliminated.A system has been conceived to produce 106 mole SO2 per hour, which is coupled to a central receiver solar system producing 106 GJ per year heat operating 2333 hrs per year. The system produces 0.62 × 106 GJ hydrogen per year when coupled to a hydrogen producing step such as Mark 11 or 13 operating 7000 hrs per year and using electric energy supplied from outside.It has been found that the cost of sulfuric acid decomposition by the solar Cristina process is approximately 31 $ per GJ hydrogen. Including the cost of solar heat (approximately 32 $ per GJ hydrogen) and that of hydrogen producing step (approximately 5 $ per GJ hydrogen), the total cost has been estimated to be 68 $ per GJ hydrogen.  相似文献   

3.
Converting solar energy efficiently into hydrogen is a promising way for renewable fuels technology. However, high-temperature heat transfer enhancement of solar thermochemical process is still a pertinent challenge for solar energy conversion into fuels. In this paper, high-temperature heat transfer enhancement accounting for radiation, conduction, and convection heat transfer in porous-medium reactor filled with application in hydrogen generation has been investigated. NiFe-Aluminate porous media is synthesized and used as solar radiant absorber and redox material. Experiments combined with numerical models are performed for analyzing thermal characteristics and chemical changes in solar receiver. The reacting medium is most heated by radiation heat transfer and higher temperature distribution is observed in the region exposed to high radiation heat flux. Heat distribution, O2 and H2 yield in the reacting medium are facilitated by convective reactive gas moving through the medium's pores. The temperature gradient caused by thermal transition at fluid-solid interface could be more decreased as much as the reaction chamber can store the transferred high-temperature heat flux. However, thermal losses due to radiation flux lost at the quartz glass are obviously inevitable.  相似文献   

4.
This study addresses the single-step thermal decomposition (pyrolysis) of methane without catalysts. The process co-produces hydrogen-rich gas and high-grade carbon black (CB) from concentrated solar energy and methane. It is an unconventional route for potentially cost effective hydrogen production from solar energy without emitting carbon dioxide since solid carbon is sequestered.A high temperature solar chemical reactor has been designed to study the thermal splitting of methane for hydrogen generation. It features a nozzle-type graphite receiver which absorbs the solar power and transfers the heat to the flow of reactant at a temperature that allows dissociation. Theoretical and experimental investigations have been performed to study the performances of the solar reactor. The experimental set-up and effect of operating conditions are described in this paper. In addition, simulation results are presented to interpret the experimental results and to improve the solar reactor concept. The temperature, geometry of the graphite nozzle, gas flow rates, and CH4 mole fraction have a strong effect on the final chemical conversion of methane. Numerical simulations have shown that a simple tubular receiver is not enough efficient to heat the bulk gas in the central zone, thus limiting the chemical conversion. In that case, the reaction takes place only within a thin region located near the hot graphite wall. The maximum CH4 conversion (98%) was obtained with an improved nozzle, which allows a more efficient gas heating due to its higher heat exchange area.  相似文献   

5.
The solar thermochemical decomposition of CH4 is carried out in a solar reactor consisting of a cavity-receiver containing an array of tubular absorbers, through which CH4 flows and thermally decomposes to H2 and carbon particles. A reactor model is formulated by coupling radiation/convection/conduction heat transfer and chemical kinetics for a two-phase solid-gas reacting flow. Experimental validation is accomplished by comparing measured and simulated absorber temperatures and H2 concentrations for a 10 kW prototype reactor tested in a solar furnace. The model is applied to optimize the design and simulate the performance of a 10 MW commercial-scale reactor mounted on a solar tower system configuration. Complete conversion is predicted for a maximum CH4 mass flow rate of 0.70 kg s−1 and a desired outlet temperature of 1870 K, yielding a solar-to-chemical energy conversion efficiency of 42% and a solar-to-thermal energy conversion efficiency of 75%.  相似文献   

6.
Decomposition of sulphuric acid is a key step of sulphur based thermochemical cycles for hydrogen production by thermal splitting of water. The Hybrid Sulphur Cycle (HyS) consisting of two reaction steps is considered as one of the most promising cycles: firstly, sulphuric acid is decomposed by high temperature heat of 800–1200 °C forming sulphur dioxide, which in a second step is used to electrochemically split water. Compared to conventional water electrolysis only about a tenth of the theoretical voltage is required making the HyS one of the most efficient processes to produce hydrogen by concentrated solar radiation. As a result, this thermochemical cycle has the potential to significantly reduce the amount of energy required for water splitting and to efficiently generate hydrogen free of carbon dioxide emissions. The European research project HycycleS aims at a technical realisation of the HyS. One objective of the project is to develop and qualify a solar interface, meaning a device to couple concentrated solar radiation into the endothermal steps of the chemical process. Therefore, a test reactor for decomposition of sulphuric acid by concentrated solar radiation was developed and tested in the solar furnace of DLR in Cologne. Tests in concentrated solar radiation were carried out for temperatures of the honeycomb up to 950 °C decomposing sulphuric acid of 50 and 96 weight-percent. Mass and energy flow of the process were calculated in order to determine energy efficiency and chemical conversion. The influence of process parameters like temperature, flow rates and space velocity on chemical conversion and reactor efficiency was analysed in detail. If catalysts like iron oxide (Fe2O3) and mixed oxides (i.e. CuFe2O4) were used a conversion of SO3 to SO2 of more than 80% at a thermal efficiency of over 25% could be reached.  相似文献   

7.
A solar energy powered Rankine cycle using supercritical CO2 for combined production of electricity and thermal energy is proposed. The proposed system consists of evacuated solar collectors, power generating turbine, high-temperature heat recovery system, low-temperature heat recovery system, and feed pump. The system utilizes evacuated solar collectors to convert CO2 into high-temperature supercritical state, used to drive a turbine and thereby produce mechanical energy and hence electricity. The system also recovers heat (high-temperature heat and low-temperature heat), which could be used for refrigeration, air conditioning, hot water supply, etc. in domestic or commercial buildings. An experimental prototype has been designed and constructed. The prototype system has been tested under typical summer conditions in Kyoto, Japan; It was found that CO2 is efficiently converted into high-temperature supercritical state, of while electricity and hot water can be generated. The experimental results show that the solar energy powered Rankine cycle using CO2 works stably in a trans-critical region. The estimated power generation efficiency is 0.25 and heat recovery efficiency is 0.65. This study shows the potential of the application of the solar-powered Rankine cycle using supercritical CO2.  相似文献   

8.
Concentrated solar thermal technology is considered a very promising renewable energy technology due to its capability of producing heat and electricity and of its straightforward coupling to thermal storage devices. Conventionally, this approach is mostly used for power generation. When coupled with the right conversion process, it can be also used to produce methanol. Indeed methanol is a good alternative fuel for high compression ratio engines. Its high burning velocity and the large expansion occurring during combustion leads to higher efficiency compared to operation with conventional fuels. This study is focused on the system level modeling of methanol production using hydrogen and carbon monoxide produced with cerium oxide solar thermochemical cycle which is expected to be CO2 free. A techno-economic assessment of the overall process is done for the first time. The thermochemical redox cycle is operated in a solar receiver-reactor with concentrated solar heat to produce hydrogen and carbon monoxide as the main constituents of synthesis gas. Afterwards, the synthesis gas is turned into methanol whereas the methanol production process is CO2 free. The production pathway was modeled and simulations were carried out using process simulation software for MW-scale methanol production plant. The methanol production from synthesis gas utilizes plug-flow reactor. Optimum parameters of reactors are calculated. The solar methanol production plant is designed for the location Almeria, Spain. To assess the plant, economic analysis has been carried out. The results of the simulation show that it is possible to produce 27.81 million liter methanol with a 350 MWth solar tower plant. It is found out that to operate this plant at base case scenario, 880685 m2 of mirror's facets are needed with a solar tower height of 220 m. In this scenario a production cost of 1.14 €/l Methanol is predicted.  相似文献   

9.
The thermochemical dissociation of CO2 and H2O from reactive SnO nanopowders is studied via thermogravimetry analysis. SnO is first produced by solar thermal dissociation of SnO2 using concentrated solar radiation as the high-temperature energy source. The process targets the production of CO and H2 in separate reactions using SnO as the oxygen carrier and the syngas can be further processed to various synthetic liquid fuels. The global process thus converts and upgrades H2O and captured CO2 feedstock into solar chemical fuels from high-temperature solar heat only, since the intermediate oxide is not consumed but recycled in the overall process. The objective of the study was the kinetic characterization of the H2O and CO2 reduction reactions using reactive SnO nanopowders synthesized in a high-temperature solar chemical reactor. SnO conversion up to 88% was measured during H2O reduction at 973 K and an activation energy of 51 ± 7 kJ/mol was identified in the temperature range of 798-923 K. Regarding CO2 reduction, a higher temperature was required to reach similar SnO conversion (88% at 1073 K) and the activation energy was found to be 88 ± 7 kJ/mol in the range of 973-1173 K with a CO2 reaction order of 0.96. The SnO conversion and the reaction rate were improved when increasing the temperature or the reacting gas mole fraction. Using active SnO nanopowders thus allowed for efficient and rapid fuel production kinetics from H2O and CO2.  相似文献   

10.
In this paper, a thermodynamic study is presented on solar hydrogen production using concentrated solar energy. In the first part, the direct decomposition process has been studied. The temperature requirements at various partial pressures of H2O, H2 and H yields, thermal efficiency and separation of products are discussed. In the second part, using consistent costing bases, the cost of hydrogen is estimated for solar-direct decomposition process and solar-electrolysis process. It has been found that the solar-direct decomposition process concept provides hydrogen costs in the range of $22/GJ which are lower by $15–$26 than those provided by a solar electrolysis process.  相似文献   

11.
Hydrogen production thermochemical cycles, based on the recirculation of sulfur-based compounds, are among the best suited processes to produce hydrogen using concentrated solar power. The sulfuric acid decomposition section is common to each sulfur-based cycle and represents one of the fundamental steps. A novel direct solar receiver-reactor concept is conceived, conceptually designed and simulated. A detailed transport phenomena model, including mass, energy and momentum balance expressions as well as suitable decomposition kinetics, is described adopting a finite volume approach. A single unit reactor is simulated with an inlet flow rate of 0.28 kg/s (corresponding to a production of approximately 11 kgH2/h in a Hybrid Sulfur process) and a direct solar irradiation at a constant power of 143 kW/m2. Results, obtained for the high temperature catalytic decomposition of SO3 into SO2 and O2, demonstrate the effectiveness of the proposed concept, operating at pressures of 14 bar. A maximum temperature of 879 °C is achieved in the reactor body, with a corresponding average SO2 mass fraction of 27.8%. The overall pressure drop value is 1.7 bar. The reactor allows the SO3 decomposition into SO2 and O2 to be realized effectively, requiring an external high temperature solar power input of 123.6 kJ/molSO2 (i.e. 123.6 kJ/molH2).  相似文献   

12.
The reversible reaction of N2O42NO2 has been experimentally studied at temperatures between 60 and 140°C in the gas phase, in a recirculating system including the decomposition reactor for N2O4, and the recombination apparatus for NO2. Calculated thermal balances of heat exchanged in different experimental conditions agree well with experimental data. For the reaction to be carried out in the liquid phase, under pressure, some comparisons have been made among heat storage capacities (HSC) with respect to different processes. An hypotetical plant based upon the reversible reaction has HSC from 1.7 to 3 times greater than one employing direct heating of water; the latter being based upon a ΔT of 30–100°C. The investigated reaction has one of the lowest turning temperatures (about 60°C) among those useful for the storage of solar energy by means of flat collectors. These characteristics joined with a maximum HSC of 200 kcal −1−1 (for the liquid-phase reaction) makes the above-mentioned reaction worthy of further studies.  相似文献   

13.
The sulfuric acid dissociation reaction, via which the production of SO2 and O2 is achieved, is the most energy intensive step of the so-called sulfur-based thermochemical cycles for the production of hydrogen. Efforts are focused on the feasibility and effectiveness of performing this reaction with the aid of a high-temperature energy/heat source like the sun. Such coupling can be achieved either directly in a solar reactor by concentrated solar radiation, or indirectly by means of a heat-exchanger/decomposer reactor using a suitable heat transfer fluid. Since a very limited amount of work regarding the potential formulations and sizing of such suitable reactors has been performed so far, the present work addresses further steps necessary for the efficient design, manufacture and operation of such reactors for sulfuric acid decomposition. In this respect, parametric studies on the SO3 decomposition with iron(III) oxide-based catalysts were performed investigating the effect of temperature, pressure and space velocity on SO3 conversion. Based on these results, an empirical kinetic law suitable for the reactor design was developed. In parallel, siliconised silicon carbide honeycombs coated with iron(III) oxide were prepared and tested in structured laboratory-scale reactors to evaluate their durability (i.e. activity vs. time) during SO3 decomposition, with the result of satisfactory and stable performance for up to 100 h of operation. The results in combination with characterization results of “aged” materials can provide valuable input for the design of prototype reactors for sulfuric acid decomposition.  相似文献   

14.
The conventional treatment method for H2S is the Claus process, which produces sulfur and water. This results in a loss of the valuable potential product hydrogen. H2S treatment would be more economically valuable if both hydrogen and sulfur products could be recovered. Based on standard heats of formation analysis, the theoretical energy required to produce hydrogen from H2S dissociation is only 20.6 kJ/mol of H2 as compared to 63.2 kJ/mol of H2 from steam methane reforming and 285.8 kJ/mol of H2 from water electrolysis. Among the many thermal decomposition methods that have been explored in the literature, Micro-wave plasma dissociation of H2S prevails as the method of choice to attain the best conversion and energy efficiency. Chemical kinetics simulations using an ideal flow reactor network have been carried out on the CHEMKIN-PRO software package and they support these findings. The reactor network simulates the thermal plasma behavior in the plasma torch, the plasma reactor, and the sulfur condenser. Two chemical kinetics mechanisms have been used and the results show an almost complete conversion of H2S into hydrogen and sulfur in the plasma reactor at an optimum temperature of about 2400 K at atmospheric pressure. While the most challenging task of the process is found to be the plasma cooling rate at the sulfur condenser where very fast quenching is required to conserve the hydrogen product from converting back to H2S.  相似文献   

15.
Thermo-chemical energy storage based on metal hydrides has gained tremendous interest in solar heat storage applications such as concentrated solar power systems (CSP) and parabolic troughs. In such systems, two metal hydride beds are connected and operating in an alternative way as energy storage or hydrogen storage. However, the selection of metal hydrides is essential for a smooth operation of these CSP systems in terms of energy storage efficiency and density. In this study, thermal energy storage systems using metal hydrides are modeled and analyzed in detail using first law of thermodynamics. For these purpose, four conventional metal hydrides are selected namely LaNi5, Mg, Mg2Ni and Mg2FeH6. The comparison of performance is made in terms of volumetric energy storage and energy storage efficiency. The effects of operating conditions (temperature, hydrogen pressure and heat transfer fluid mass flow rates) and reactor design on the aforementioned performance metrics are studied and discussed in detail. The preliminary results showed that Mg-based hydrides store energy ranging from 1.3 to 2.4 GJ m?3 while the energy storage can be as low as 30% due to their slow intrinsic kinetics. On the other hand, coupling Mg-based hydrides with LaNi5 allow us to recover heat at a useful temperature above 330 K with low energy density ca.500 MJ m?3 provided suitable operating conditions are selected. The results of this study will be helpful to screen out all potentially viable hydrides materials for heat storage applications.  相似文献   

16.
The thermal decomposition of limestone and gypsum by concentrated solar radiation was studied. A 1.5-kW solar furnace was used to obtain the required reaction temperature. Maximum conversions of 65% and 38% were obtained for CaCO3 and CaSO4·H2O decomposition, respectively.  相似文献   

17.
The chemical heat pumps using monovariant solid/gas reactions and thermal solar energy are potentially interesting for the air-conditioning of building (heating in winter or mid-season and refreshing in summer). They provide a function of storage without loss and potentially at high energy density. The selected reaction involves SrBr2 as reactant and H2O as refrigerant fluid. It is adapted to the thermodynamic constraints in temperature (heat provided by plane solar collector, heating and cooling on the level of the floor) and uses reagents having a weak impact for the environment and health. The reactive salt SrBr2 is implemented with an expanded natural graphite in the form of a consolidated material which has acceptable thermal conductivity and permeability adapted to low pressure. The prototype reactor has a total volume of 1 m3. It is able to store, with a complete reaction, 60 kW h or 40 kW h for the heating or cooling function respectively. This prototype was tested under conditions representative of summer or mid-season; the mean heating or cooling powers, typically about 2.5–4 kW, are still insufficient because of a low heat transfer at the interface between the reactive layer and the exchanger wall. However this limitation can be clearly attenuated; that is the subject of current work in following these first experiments.  相似文献   

18.
Global effects of greenhouse gas emissions associated with the current extensive use of fossil fuels are increasingly attracting research groups and industry to find a solution. In order to reduce or avoid such emissions, solar thermal cracking of natural gas has been studied by many research groups as a clean and economically viable option for hydrogen production with zero CO2 emissions. By utilization of concentrated solar energy as the source of high temperature process heat, natural gas is decomposed into hydrogen gas and high grade carbon using a solar reactor. Our previous study shows that temperature distribution inside the solar reactor has significant effect on hydrogen production. In this paper, we expand our previous study by demonstrating that reactor geometry has a notable impact on temperature distribution inside the solar reactor and therefore it has an impact on natural gas to hydrogen conversion. Results show that there are approximately 22% and 32% losses from spherical and cylindrical reactors, respectively, while hydrogen production amount varies from 1.27 g/s to 8.95 g/s for spherical reactor, and 0.94 g/s to 8.94 g/s for cylindrical reactor geometry.  相似文献   

19.
The thermal stability of the materials that comprise the battery has been one of the important issues. By using temperature programmed desorption-mass spectrometry (TPD-MS) and XRD, the thermal decomposition reaction of delithiated LixCoO2 (x = 1, 0.81, 0.65) was quantitatively analyzed. Delithiated LixCoO2 samples were metastable and liberated oxygen at a temperature of above 250 °C. Liberated oxygen gas was quantified by TPD-MS. Structural changes of the samples were confirmed by XRD. We identified the stoichiometry of the thermal decomposition reaction of LixCoO2. Furthermore, to analyze the heating rate dependence of the oxygen generation, we calculated the activation energy (Ea) of the thermal decomposition reaction. The average Ea through the reaction of Li0.81CoO2 is 130 kJ mol−1, and that of Li0.65CoO2 is 97 kJ mol−1. The Li content decreased as the activation energy increased.  相似文献   

20.
Performance analysis of solar-assisted chemical heat-pump dryer   总被引:1,自引:0,他引:1  
M.I. Fadhel  K. Sopian 《Solar Energy》2010,84(11):1920-1928
A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH3). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experiment of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COPh) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号