首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
Direct expansion solar-assisted heat pump (DX-SAHP) systems have been proposed as viable alternatives to conventional solar-assisted heat pump systems. This study proposes the use of two-stage DX-SAHP systems for high temperature applications in the range of 60–90 °C. The study investigates the capability of these systems of meeting loads with high temperature requirements. The thermal performance of the systems is analyzed for refrigerant R-134a, using a one-cover solar collector. Comparisons between the two-stage DX-SAHP and the single-stage DX-SAHP systems are performed and presented. A graphical procedure is illustrated and used for sizing the solar collector area and the heat pump compressor displacement capacity for the two DX-SAHP systems.  相似文献   

2.
X.Q. Kong  D. Zhang  Y. Li  Q.M. Yang 《Energy》2011,36(12):6830-6838
A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m2, an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system.  相似文献   

3.
《Energy Conversion and Management》2005,46(15-16):2614-2624
The thermal performance of a direct expansion solar assisted heat pump (DX-SAHP) is analyzed for several refrigerants using two collector configurations, namely a bare collector and a one cover collector. The REFPROP computer program, developed by the National Institute of Science and Technology, is employed to predict the refrigerant properties involved in the energy balance across the collector. The thermal performance, as characterized by the coefficient of performance (COP), is determined for a variety of pure refrigerants as well as refrigerant mixtures. The performance degradation due to switching from R-12 to pure hydrofluorocarbon (HFC) refrigerants as well as refrigerant blends is investigated. A graphical procedure is developed and illustrated for several refrigerants for sizing the solar collector area and the heat pump compressor displacement capacity for the two collector configurations considered in this study.  相似文献   

4.
《Applied Thermal Engineering》2001,21(10):1049-1065
Analytical and experimental studies were performed on a solar assisted heat pump water heating system, where unglazed, flat plate solar collectors acted as an evaporator for the refrigerant R-134a. The system was designed and fabricated locally, and operated under meteorological conditions of Singapore. The results obtained from simulation are used for the optimum design of the system and enable determination of compressor work, solar fraction and auxiliary energy required for a particular application. To ensure proper matching between the collector/evaporator load and compressor capacity, a variable speed compressor was used. Due to high ambient temperature in Singapore, evaporator can be operated at a higher temperature, without exceeding the desired design pressure limit of the compressor, resulting in an improved thermal performance of the system. Results show that, when water temperature in the condenser tank increases with time, the condensing temperature, also, increases, and the corresponding COP and collector efficiency values decline. Average values of COP ranged from about 4 to 9 and solar collector efficiency was found to vary between 40% and 75% for water temperatures in the condenser tank varying between 30°C and 50°C. A simulation model has been developed to analyse the thermal performance of the system. A series of numerical experiments have been performed to identify important variables. These results are compared with experimental values and a good agreement between predicted and experimental results has been found. Results indicate that the performance of the system is influenced significantly by collector area, speed of the compressor, and solar irradiation. An economic analysis indicates a minimum payback period of about two years for the system.  相似文献   

5.
Thermal performance of a direct expansion solar-assisted heat pump   总被引:2,自引:0,他引:2  
A direct expansion solar assisted heat pump, in which a bare flat plate collector also acts as the evaporator for the refrigerant, Freon-12, is designed and operated. The system components, e.g. the collector and the compressor, are properly matched so as to result in system operating conditions wherein the collector/evaporator temperature ranges from 0 to 10°C above ambient temperature under favorable solar conditions. This operating temperature range is particularly favorable to improved heat pump and solar collector performance. The system thermal performance is determined by measuring refrigerant flow rate, temperature and pressure at various points in the system. The heat pump COPH and the solar collector efficiency ranged from 2.0 to 3.0 and from 40 to 70 per cent, respectively, for widely ranging ambient and operating conditions. Experimental results indicate that the proposed system offers significant advantage in terms of superior thermal performance when compared with results gotten by replacing the solar evaporator with a standard outdoor fan-coil unit.  相似文献   

6.
Analytical and experimental studies were performed on a direct‐expansion solar‐assisted heat pump (DX‐SAHP) water heating system, in which a 2 m2 bare flat collector acts as a source as well as an evaporator for the refrigerant. A simulation model was developed to predict the long‐term thermal performance of the system approximately. The monthly averaged COP was found to vary between 4 and 6, while the collector efficiency ranged from 40 to 60%. The simulated results were used to obtain an optimum design of the system and to determinate a proper strategy for system operating control. The effect of various parameters, including solar insolation, ambient temperature, collector area, storage volume and speed of compressor, had been investigated on the thermal performance of the DX‐SAHP system, and the results had indicated that the system performance is governed strongly by the change of solar insolation, collector area and speed of compressor. The experimental results obtained under winter climate conditions were shown to agree reasonably with the computer simulation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A simulation model is utilized to predict the performance of a high temperature water-to-water heat pump, running on Refrigerant 11, over a range of evaporator and condenser water temperature (10 to 40°C and 40 to 70°C) and compressor speeds (500 to 3000 r.p.m.). It is shown that heat pump power output can be effectively controlled by varying compressor speed. Effects of compressor speed, heat source and heat sink (end-use) temperature on the heat pump efficiency are presented. Special attention is devoted to the values of predicted refrigerant temperature at the compressor discharge. These are compared with the thermal limit of the refrigerant. Modifications to the system, to reduce refrigerant maximum temperature, are also discussed.  相似文献   

8.
A solar-assisted heat pump system with a conventional backup unit was simulated for a 93 m2 (1000 ft2) house in Rhode Island using quasi-dynamic computer models. The performance of the system as a function of collector area and thermal storage volume was evaluated to determine the fraction of the space heating and domestic hot water load that was supplied by the solar-assisted system. This information was used to compute the payback time, based on cumulative costs, for each variation of the system's parameters when compared to a conventional system. The optimal combination of system components which had a payback time less than the mortgage life was determined. For the given initial costs of solar panels and storage reservoir, this optimal combination was found to be insensitive to the variations in mortgage and fuel cost growth rates presented in this report.  相似文献   

9.
为研究微通道集热/蒸发器内制冷剂分布及对直膨式太阳能热泵系统性能的影响,搭建以丙烷(R290)为制冷剂的系统实验平台。基于实验数据,提出一种利用红外成像技术分析微通道集热/蒸发器内两相态制冷剂分布的方法,获得了电子膨胀阀开度、太阳辐射强度以及环境温度对集热/蒸发器内两相态制冷剂分布情况的影响特性。结果表明:当电子膨胀阀开度由20%增至60%时,集热/蒸发器的制冷剂分布参数(RDP)提高10.6%,系统性能系数(COP)从2.8升至5.5。较高的太阳辐射强度或环境温度可有效避免制冷剂回流现象。  相似文献   

10.
In order to get more power and heat from PV/T system, it is necessary to cool the PV cell and decrease its temperature. This is not an easy task especially in hot and humid climate areas. There is a lack of an effective cooling strategy of PV/T panels. The liquid based photovoltaic thermal collector systems are practically more desirable and effective than air based systems. Temperature fluctuation in liquid based PV/T is much less than the air based PV/T collectors which subjected to variation in solar radiation levels. In this study a review of the available literature on PV/T collector systems which utilize water and refrigerant (working fluid) as heat removal medium for different applications has been conducted. Future direction of water-cooled and refrigerant hybrid photovoltaic thermal systems was presented. This study revealed that the direct expansion solar-assisted heat pump system achieved better cooling effect of the PV/T collector.  相似文献   

11.
Gas engine heat pumps play an important role in energy saving and environment protection in both cooling and heating applications. In the present work, a thermal modelling of the gas engine driven heat pump in cooling mode is performed and system main parameters such as cooling capacity, gas engine energy consumption and primary energy ratio (PER) are computed. The modelling of the gas engine heat pump includes modelling of the scroll compressor, the plate evaporator and the gas engine. Discharged refrigerant mass flow rate and compressor power represent the main output parameters of the compressor semi-empirical model. Using the discharged refrigerant mass flow rates along with the available evaporation heat transfer correlations, the system cooling capacity is deduced. Based on the present experimental data, a correlation of gas engine energy consumption as function of compressor power, engine speed and ambient air temperature is obtained. Furthermore, the gas engine heat pump model is validated by comparing experimental and simulation data. The model error percentages to predict the cooling capacity, the gas engine energy consumption and the PER are 7%, 5%, 6% respectively.  相似文献   

12.
传统直膨式太阳能辅助热泵系统在低温环境适应性欠佳,影响其在寒冷地区使用,通过采用补气增焓技术可以有效提高其低温条件下的供热能力。以所提出的采用PVT集热/蒸发器的补气增焓热泵系统为研究对象,计算分析环境条件、太阳辐射强度、注入蒸汽质量流量对该热泵系统性能的影响。研究结果表明: 当环境温度为-10℃,太阳照强度为500 W/m2时,性能系数(COP)可达4.3,比使用补气增焓(VI)循环的空气源热泵(ASHP)系统高63.6%。以当量热价(LCOH)作为指标与其他3种供热系统进行比较,所提出的系统经济性也具有一定的优势,可为补气增焓热泵系统在寒冷气候地区的应用提供新思路。  相似文献   

13.
The performance of a photovoltaic solar assisted heat pump (PV-SAHP) with variable-frequency compressor is reported in this paper. The system is a direct integration of photovoltaic/thermal solar collectors and heat pump. The solar collectors extract the required thermal energy from the heat pump and at the same time, the cooling effect of the refrigerant lowers the working temperature of the solar cells. So this combined system has a relatively high thermal performance with an improved photovoltaic efficiency. To adapt to the continuously changing solar radiation and ambient temperature conditions, the refrigerant mass flow rate should match the heat gain at the evaporator accordingly. A variable-frequency compressor and an electricity-operated expansion valve were used in the proposed system. Mathematical models were developed to evaluate the energy performance of the combined system based on the weather conditions of Tibet. The simulation results indicated that on a typical sunny winter day with light breeze, the average COP could reach 6.01, and the average electricity efficiency, thermal efficiency and overall efficiency were 0.135, 0.479 and 0.625 respectively.  相似文献   

14.
A prototype heat pump was designed and tested, as means of active thermal management for electronics packages to be used on stratospheric balloon missions. The evaporator worked as a cold plate to absorb heat dissipated by the electronics, while the condenser rejected heat primarily by radiation to the rarified environment. To predict the transient performance of the heat pump under varying environmental temperature and cooling load conditions, a dynamic model of the heat pump is created with a graphical user interface (GUI). The simulation of the evaporator and condenser are fully transient and the components are segmented, whereas the compressor and expansion device are lumped models and assumed to be at quasi-steady state. A detailed model for the mass and energy conservation in the two heat exchangers is presented. The spatial and temporal variation of temperature and mass flow rate in the heat exchangers are predicted. Several types of transient conditions such as step changes of the space temperature and cooling load, system start-up, shutdown, and cycling, are studied. The space temperature, cooling load, compressor power, mass flow rates of the compressor and expansion device, pressures and refrigerant charges of the condenser and evaporator, and temperature distribution in the heat exchangers are dynamically displayed on the GUI. The simulation results are compared with experimental data for step changes in the cooling load and show good agreement in terms of trends. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
PERFORMANCE OF A HEAT PUMP USING DIRECT EXPANSION SOLAR COLLECTORS   总被引:1,自引:0,他引:1  
Theoretical and experimental studies were made on the thermal performance of a heat pump that used a bare flat-plate collector as the evaporator. The analysis used empirical equations to express the electric power consumption of the compressor and coefficient of performance (COP), as functions of temperature of evaporation at the evaporator and that of the heat transfer medium (water) at the inlet of the condenser. The experimental heat pump had a compressor with a rated capacity of 350 W and collectors with the total area of 3.24 m2. Around noon in winter the evaporator temperature was found to be about 17°C higher than the ambient air temperature of 8°C, and a COP of about 5.3 was obtained when the water temperature at the condenser inlet was 40°C. These measured evaporation temperatures and COPs were in good agreement with those predicted by the analysis. According to the analysis, the total area of the collectors in the experiment was appropriate for the heat pump system. Also, the 1-mm thickness of the collector's copper plate used in the experiment could be 0.5 mm with little reduction of COP. The pitch of the tube soldered to the copper plate for the refrigerant flow was 100 mm in the experiment, but the COP would only be reduced by about 4% if the pitch were changed to 190 mm.  相似文献   

16.
The characteristic of an integral type solar-assisted heat pump water heater (ISAHP) is investigated in the present study. The ISAHP consists of a Rankine refrigeration cycle and a thermosyphon loop that are integrated together to form a package heater. Both solar and ambient air energies are absorbed at the collector/evaporator and pumped to the storage tank via a Rankine refrigeration cycle and a thermosyphon heat exchanger. The condenser releases condensing heat of the refrigerant to the water side of the thermosyphon heat exchanger for producing a natural-circulation flow in the thermosyphon loop. A 105-liter ISAHP using a bare collector and a small R134a reciprocating-type compressor with rated input power 250 W was built and tested in the present study. The ISAHP was designed to operate at an evaporating temperature lower than the ambient temperature and a matched condition (near saturated vapor compression cycle and compressor exhaust temperature <100°C). A performance model is derived and found to be able to fit the experimental data very well for the ISAHP. The COP for the ISAHP built in the present study lies in the range 2.5–3.7 at water temperature between 61 and 25°C.  相似文献   

17.
《Energy》1999,24(3):247-259
Two-phase flow of pure chlorofluorocarbon (CFC) refrigerants in solar collector tubes has been examined in previous studies in connection with applications in direct-expansion, solar-assisted heat pumps (DX-SAHP). The present work extends the thermodynamic analysis of solar collectors to the multicomponent and multiphase domain to cover newly proposed refrigerant mixtures which are potential candidates for replacing CFCs in future DX-SAHP systems. A computational methodology is developed to determine the size of a solar collector of a DX-SAHP that uses a binary refrigerant mixture whose thermodynamic and transport properties are predicted from a computer code. The energy equation for the elemental collector tube control volume, incorporating the local thermodynamic and heat transfer characteristics, is integrated to determine the tube length for a given set of inlet and exit thermodynamic states of the refrigerant mixture. Effects of various parameters such as the collector mass-flow rate and operating pressure, tube diameter and absorbed solar radiation on the collector tube length, heat transfer coefficient, and the local refrigerant temperature in the tube are also considered.  相似文献   

18.
In this study, a direct expansion solar-assisted heat pump water heater (DX-SAHPWH) with rated input power 750 W was tested and analyzed. Through experimental research in spring and thermodynamics analysis about the system performance, some suggestions for the system optimization are proposed. Then, a small-type DX-SAHPWH with rated input power 400 W was built, tested and analyzed. Through exergy analysis for each component of DX-SAHPWH (A) and (B), it can be seen that the highest exergy loss occurs in the compressor and collector/evaporator, followed by the condenser and expansion valve, respectively. Furthermore, some methods are suggested to improve the performance of each component, especially the collector/evaporator. A methodology for the design optimization of the collector/evaporator was introduced and applied. In order to maintain a proper matching between the heat pumping capacity of the compressor and the evaporative capacity of the collector/evaporator under widely varying ambient conditions, the electronic expansion valve and variable frequency compressor are suggested to be utilized for the DX-SAHPWH.  相似文献   

19.
太阳能-空气复合热源热泵热水器的性能模拟与分析   总被引:2,自引:0,他引:2  
徐国英  张小松 《太阳能学报》2006,27(11):1148-1154
介绍了一种新型太阳能—空气复合热源热泵热水装置(SAS-HPWH)。该装置通过使用独特设计的螺旋翅片蒸发管的平板型集热/蒸发器,可以在不同的天气情况下切换运行太阳能热源热泵模式、太阳能与空气双热源热泵模式和空气源热泵模式,制取生活热水。论文主要针对自行设计的一台150L的SAS-HPWH,建立系统的数学模型,并以太阳能输入比例为准则研究系统的运行模式与特性。模拟结果显示该热水器在不同天气特征情况下可高效率地制造55℃热水。论文还分析了太阳辐射、环境温度以及压缩机的容量对系统特性的影响,提出使用变频压缩机,根据不同的天气情况调节制冷剂流量,进一步提高系统的整体性能。  相似文献   

20.
In this study, the performance of a solar heating system with a heat pump was investigated both experimentally and theoretically. The experimental results were obtained from November to April during the heating season. The experimentally obtained results are used to calculate the heat pump coefficient of performance (COP), seasonal heating performance, the fraction of annual load met by free energy, storage and collector efficiencies and total energy consumption of the systems during the heating season. The average seasonal heating performance values are 4.0 and 3.0 for series and parallel heat pump systems, respectively. A mathematical model was also developed for the analysis of the solar heating system. The model consists of dynamic and heat transfer relations concerning the fundamental components in the system such as solar collector, latent heat thermal energy storage tank, compressor, condenser, evaporator and meteorological data. Some model parameters of the system such as COP, theoretical collector numbers (Nc), collector efficiency, heating capacity, compressor power, and temperatures (T1, T2, T3, TT) in the storage tank were calculated by using the experimental results. It is concluded that the theoretical model agreed well with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号