首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
生物质能发电技术及其分析   总被引:2,自引:0,他引:2  
介绍一些常用的生物质能转化方式,包括生物质固体成型技术、生物质液体燃料转化技术以及生物质制取气体技术.同时详细地介绍了秸秆燃烧发电、沼气发电、整体气化发电(BIG)、生物质燃料电池等一些常用的、比较有前景的生物质能发电技术.最后,结合目前国内外生物质能发展现状以及发展中需注意的问题从技术的可行性、经济性等方面做了一些分析.  相似文献   

2.
我国生物质发电产业现状及建议   总被引:4,自引:0,他引:4  
生物质发电是目前发展最成熟、规模最大的生物质能利用技术,通过利用生物质燃烧或转化技术实现可燃气体的燃烧发电。文章叙述了我国发展生物质发电产业的意义,概括和总结了国内外在生物质直燃发电、混燃发电和气化发电方面的现状和经验,指出我国生物质发电产业所面临的挑战,最后提出了有关生物质发电产业的商业化建议。  相似文献   

3.
生物质能发电技术分析   总被引:5,自引:0,他引:5  
在不可再生能源濒临枯竭,环境污染日益加剧的今天,生物质能源替代化石能源利用的研究和开发,已成为国内外学者研究和关注的热点。介绍了国内外生物质能的主要转化利用技术,分析了生物质直接燃烧发电技术和气化发电技术,提出了符合能量梯级利用原则的生物质能发电方式,将是生物质能利用的主要形式。  相似文献   

4.
对国内生物质能利用技术的现状进行了简要介绍和分类,以经济评价为基础,对生物质直接燃烧、户用沼气池、生物质气化发电、大中型养殖场沼气工程和垃圾发电等生物质能技术进行了综合分析,提出了根据地方实际,发展不同生物质能技术的建议。  相似文献   

5.
生物质气化发电技术的现状及发展趋势   总被引:1,自引:0,他引:1  
简要介绍了国内外生物质气化发电技术的研究现状及发展趋势。生物质气化发电技术在发达国家已受到广泛重视,生物质联合循环发电技术(BIGCC)利用外燃机燃用生物质气,可避免高温气化气的除尘除焦难题,是一种比较先进的生物质能利用技术。根据我国国情,引进大型BIGCC并采用内燃机代替燃气轮机,是解决我国生物质气化发电规模化发展的有效手段之一。  相似文献   

6.
正生物质燃料是指将生物质材料燃烧作为燃料,一般主要是农林废弃物(如秸秆、锯末、甘蔗渣、稻糠等),主要区别于化石燃料。是将农林废物作为原材料,经过粉碎、混合、挤压、烘干等工艺,制成各种成型(如块状、颗粒状等)的,可直接燃烧的一种新型清洁燃料。生物质发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电。那么,生物质发电  相似文献   

7.
浅谈生物质气化在发电技术应用   总被引:2,自引:0,他引:2  
随着经济的发展,世界各国电力需求猛增,电力供应日益紧张,在这种环境下,通过气化发电技术,把生物质能转化为电能,既能大规模处理生物质废料,又能提供电力,具有明显的社会和经济效益。介绍了生物质气化发电技术的国内外发展现状,着重讲述了生物质气化发电技术的原理、特点和分类,以及各类生物质气化发电技术的特点,分析了生物质气化发电技术的社会效益及应用前景。指出在我国这样一个农业大国应该大力发展生物质气化发电技术。  相似文献   

8.
综述了国内外生物质能应用技术现状,包括生物质捆包直燃供热技术、生物质成型燃料供热技术、生物质直燃发电技术、生物质气化多联产技术、生物质气化产碳耦合供热技术、生物质气化耦合大型燃煤锅炉技术,以及生物质气化制氢、NH3及甲醇技术,为生物质能进一步利用提供方向。  相似文献   

9.
1气化发电工作原理生物质气化发电技术的基本原理是把生物质转化为可燃气,再利用可燃气推动燃气发电设备进行发电。它既能解决生物质难于燃用而且分布分散的缺点,又可以充分发挥燃气发电技术设备紧凑而且污染少的优点,所以气化发电是生物质能最有效最洁净的利用方法之一。气化发电过程包括3个方面:一是生物质气化,把固体生物质转化为气体燃料;二是气体净化,气化出来的燃气都含有一定的杂质,包括灰分、焦炭和焦油等,需经过净化系统把杂质除去,以保证燃气发电设备的正常运行;三是燃气发电,利用燃气轮机或燃气内燃机进行发电,有…  相似文献   

10.
近日,国家发改委、财政部就生物质能综合利用发出通知.为加速农林废弃生物质能综合利用,国家近期将重点支持三大领域,包括生物质成型燃料、畜禽养殖场沼气发电和生物质气化(炭化)发电.  相似文献   

11.
A new biomass integrated gasification combined cycle (BIGCC), which featured an innovative two-stage enriched air gasification system coupling a fluidized bed with a swirl-melting furnace, was proposed and built for clean and efficient biomass utilization. The performance of biomass gasification and power generation under various operating conditions was assessed using a comprehensive Aspen Plus model for system optimization. The model was validated by pilot-scale experimental data and gas turbine regulations, showing good agreement. Parameters including oxygen percentage of enriched air (OP), gasification temperature, excess air ratio and compressor pressure ratio were studied for BIGCC optimization. Results showed that increase OP could effectively improve syngas quality and two-stage gasification efficiency, enhancing the gas turbine inlet and outlet temperature. The maximum BIGCC fuel utilization efficiency could be obtained at OP of 40%. Increasing gasification temperature showed a negative effect on the two-stage gasification performance. For efficient BIGCC operation, the excess air ratio should be below 3.5 to maintain a designed gas turbine inlet temperature. Modest increase of compressor pressure ratio favored the power generation. Finally, the BIGCC energy analysis further proved the rationality of system design and sufficient utilization of biomass energy.  相似文献   

12.
生物质能源是一种环境友好的可再生能源,但也存在能量密度低、含水率高、碱金属含量高等缺点,导致其在热利用的过程中存在易结渣、堵灰及腐蚀、热效率不高等问题。本文结合生物质气化、炉内碱金属/硫固定、两级焦油裂解、蓄热式燃烧,以及冷凝热回收等多项先进技术,设计并搭建了连续蓄热式生物质气化/燃烧供热系统。以海洋贝壳类废弃物作为生物质成型燃料的添加剂和生物质焦油裂解过程的催化剂,在实现海洋废弃资源高值化利用的同时,克服了生物质热利用过程中的多项障碍,能够显著提高生物质能热利用效率,同时大幅度降低当前工业及民用供热过程中CO2、SOx、NOx及烟尘的排放,具有良好的经济性与环保性。  相似文献   

13.
《能源学会志》2020,93(6):2293-2313
The access to electricity has increased worldwide, growing from 60 million additional consumers per year in 2000–2012 to 100 million per year in 2012–2016. Despite this growth, approximately 675 million people will still lack access to electricity in 2030, indicating that electricity demand will continue to increase. Unfortunately, traditional large fossil power technologies based on coal, oil and natural gas lead to a major concern in tackling worldwide carbon dioxide emissions, and nuclear power remains unpopular due to public safety concerns. Distributed power generation utilizing CO2-neutral sources, such as gasification of biomass and municipal solid wastes (MSW), can play an important role in meeting the world energy demand in a sustainable way. This review focuses on the recent technology developments on seven power generation technologies (i.e. internal combustion engine, gas turbine, micro gas turbine, steam turbine, Stirling engine, organic rankine cycle generator, and fuel cell) suitable for distributed power applications with capability of independent operation using syngas derived from gasification of biomass and MSW. Technology selection guidelines is discussed based on criteria, including hardware modification required, size inflexibility, sensitivity to syngas contaminants, operational uncertainty, efficiency, lifetime, fast ramp up/down capability, controls and capital cost. Major challenges facing further development and commercialization of these power generation technologies are discussed.  相似文献   

14.
The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories: (1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 °C ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies; (2) system innovation and specific, high- efficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization; (3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system (CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.  相似文献   

15.
针对广大农村沼气和太阳能利用率低的问题,提出了一种生物质能与太阳能互补综合利用的生态村分布式供能系统。该系统将太阳能光伏发电、太阳能光热转换、生物质气化与常规燃气发电整合,实现生物质能与太阳能的供电、供暖、制冷、供燃气和供热水五联产,可有效缓解新农村含碳能源利用带来的环境和安全性问题,有效解决生物质利用效率低和太阳能利用不稳定等技术瓶颈问题。以唐山市沙河驿镇唐庄子村为例,优化生态村分布式供能系统方案,其研究结果可为生态村的建设提供技术支撑。  相似文献   

16.
With the fast economic growth, the energy demand in China has increased two-fold in the past three decades. Various energy resources have been exploited and utilized and biomass is one of the energy resources that is abundant and has been widely used in China for a long time. Biomass gasification is an efficient and advanced technology for extracting the energy from biomass and has received increasing attention in the energy market. In this paper the development of biomass gasification for various energy applications in China is reviewed and their prospects are discussed. Among the different biomass gasification technologies, biomass gasification and power generation is found to be the most promising biomass gasification technology that has great potential to be further developed in China.  相似文献   

17.
农作物废弃物是江苏省最主要的生物质资源,利用其进行发电可以有效地解决能源紧张以及在秸秆就地焚烧引发的一系列问题.江苏省生物质发电技术发展较早,其中混燃与气化技术是两种具有代表性的发电模式.目前,国内外通常对这些技术的进行单独研究,但是还没有针对两种技术路线的综合比较与分析的系统研究.通过对现有的混燃和气化发电案例进行充分调研,从燃料、进料系统、发电技术、经济性、污染物减排及面临的主要问题等方面,对两种模式的优缺点进行综合比较与分析.并在此基础上,探讨了这两种模式的合理发展路线.  相似文献   

18.
This study was aimed at proposing a novel integrated process for co-production of hydrogen and electricity through integrating biomass gasification, chemical looping combustion, and electrical power generation cycle with CO2 capture. Syngas obtained from biomass gasification was used as fuel for chemical looping combustion process. Calcium oxide metal oxide was used as oxygen carrier in the chemical looping system. The effluent stream of the chemical looping system was then transferred through a bottoming power generation cycle with carbon capture capability. The products achieved through the proposed process were highly-pure hydrogen and electricity generated by chemical looping and power generation cycle, respectively. Moreover, LNG cold energy was used as heat sink to improve the electrical power generation efficiency of the process. Sensitivity analysis was also carried out to scrutinize the effects of influential parameters, i.e., carbonator temperature, steam/biomass ratio, gasification temperature, gas turbine inlet stream temperature, and liquefied natural gas (LNG) flow rate on the plant performance. Overall, the optimum heat integration was achieved among the sub-systems of the plant while a high energy efficiency and zero CO2 emission were also accomplished. The findings of the present study could assist future investigations in analyzing the performance of integrated processes and in investigating optimal operating conditions of such systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号