首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Fuel Cell (FC), as a type of new renewable energy sources grid-connected at Point of Common Coupling (PCC), is introduced in this study. This article presents the power quality improvement of the FC integrated to the power network through a chopper and an inverter using the conventional PI controller. Two PI controllers, tuned by three recent different evolutionary computing techniques namely Harmony Search (HS), Modified Flower Pollination Algorithm (MFPA) and Electromagnetic Field Optimization (EFO) methods are considered. The two PI controllers are used for driving the inverter connected the on-grid FC in order to govern the PCC voltage between the FC and the power network. These two controllers are exploited to drive the power and the current regulators at different voltage sag and swell conditions. The three optimization methods are compared to the Particle Swarm Optimization (PSO) with regards to voltage profile, power quality and execution time.Simulation results, using Matlab/Simulink?, show the significance of the three optimization techniques in regulating the voltage at PCC with reduced harmonics during the system voltage sag and swell conditions when compared to the PSO. Through the numerical analysis, the superiority of MFPA method among the different optimization metaheuristic techniques is highlighted particularly for enhanced dynamic voltage response purposes.  相似文献   

2.
This paper presents an adaptive neuro fuzzy interference system (ANFIS) based approach to tune the parameters of the static synchronous compensator (STATCOM) with frequent disturbances in load model and power input of a wind-diesel based isolated hybrid power system (IHPS). In literature, proportional integral (PI) based controller constants are optimized for voltage stability in hybrid systems due to the interaction of load disturbances and input power disturbances. These conventional controlling techniques use the integral square error (ISE) criterion with an open loop load model. An ANFIS tuned constants of a STATCOM controller for controlling the reactive power requirement to stabilize the voltage variation is proposed in the paper. Moreover, the interaction between the load and the isolated power system is developed in terms of closed loop load interaction with the system. Furthermore, a comparison of transient responses of IHPS is also presented when the system has only the STATCOM and the static compensation requirement of the induction generator is fulfilled by the fixed capacitor, dynamic compensation requirement, meanwhile, is ful-filled by STATCOM. The model is tested for a 1% step increase in reactive power load demand at t = 0 s and then a sudden change of 3% from the 1% at t = 0.01 s for a 1% step increase in power input at variable wind speed model.  相似文献   

3.
The concept of renewable energy based microgrid (MG) and its control has been evolved as key area of research in energy sector. In this paper, a decentralized control strategy based on modified fractional order PI (MFO-PI) and two-degree of freedom PI (2DOF-PI) controllers is proposed for efficient operation of an autonomous MG. The autonomous MG consists of solid oxide fuel cell (SOFC) & photovoltaic (PV) system as distributed generation (DG), battery energy storage system (BESS) as a storage unit and various AC & DC loads. The MFO-PI controller is utilized for controlling voltage source inverters (VSI) and 2DOF-PI is utilized for controlling various DGs and BESS. An evaporation rate-based water cycle algorithm (ERWCA) is employed to optimally tune the proposed controllers. To show the effectiveness of the proposed decentralized control strategy, a comparison of various performance indices such as overshoot, settling time and integral absolute error is made with PI and fractional order PI controllers. The results show that proposed control strategy is efficient in improving the steady state as well as dynamic performance of the system under all operating conditions by effectively regulating the real and reactive power flows among the DGs.  相似文献   

4.
This paper presents modeling, design and analysis of a Grid-connected Hybrid Photovoltaic Fuel Cell System (HPVFCS) with a reactive power compensation feature. A hydrogen based fuel cell is a proven technology and its use along with the photovoltaic system (PV) can lead to energy stability in grid-connected or standalone systems. In this paper, the Voltage Source Converter (VSC) is connected between the DC output of HPVFCS and an AC grid. The control strategy employed guarantees the maximum utilization of the PV array and the optimum use of an FC. The active and reactive power of VSC can be controlled independently using P-Q control theory. The additional function of the reactive power compensation using P-Q control theory can enhance the performance of the distribution systems where HPVFCS system is connected. Its applicability is verified by the test bench created with MATLAB/Simulink®  相似文献   

5.
鉴于含静止同步补偿器(STATCOM)的微电网孤岛运行时电压的稳定性是微电网未来发展面临的主要问题之一,针对孤岛微电网中的STATCOM设计了一种基于二自由度内模控制的控制器代替传统PI控制器,通过参数整定同时提高STATCOM的跟踪性能和鲁棒性,从而稳定孤岛微电网电压,通过建立阻抗模型,利用阻抗法分析两种控制方法的STATCOM对孤岛微电网电压稳定性的影响,并进行仿真验证。结果表明,与PI控制相比,基于二自由度内模控制的STATCOM可有效提升孤岛微电网电压的稳定性。  相似文献   

6.
静止同步补偿器(STATCOM)是目前用于电力系统中性能最好的无功补偿装置。文中介绍了静止同步补偿器的基本工作原理、类型、主电路结构控制策略,从STATCOM的谐波、控制策略、安装位置和STATCOM对保护的灵敏度等四个方面综述了STATCOM应用于电力系统后对继电保护的影响的研究现状。  相似文献   

7.
Due to several factors, wind energy becomes an essential type of electricity generation. The share of this type of energy in the network is becoming increasingly important. The objective of this work is to present the modeling and control strategy of a grid connected wind power generation scheme using a doubly fed induction generator (DFIG) driven by the rotor. This paper is to present the complete modeling and simulation of a wind turbine driven DFIG in the second mode of operating (the wind turbine pitch control is deactivated). It will introduce the vector control, which makes it possible to control independently the active and reactive power exchanged between the stator of the generator and the grid, based on vector control concept (with stator flux or voltage orientation) with classical PI controllers. Various simulation tests are conducted to observe the system behavior and evaluate the performance of the control for some optimization criteria (energy efficiency and the robustness of the control). It is also interesting to play on the quality of electric power by controlling the reactive power exchanged with the grid, which will facilitate making a local correction of power factor.  相似文献   

8.
鉴于STATCOM具有能快速灵活地输出无功功率、稳定电网接入点电压、实现电网的三相平衡化补偿等特性,以电网的电压、电流不平衡度低于国家标准为目标,将STATCOM稳态模型引入三相潮流分析中,探讨了电网应用STATCOM补偿电力系统三相不平衡潮流问题。算例分析结果表明,采用STATCOM进行电力系统三相不对称潮流的平衡化补偿具有较好的效果,可有效降低电网不平衡度以提高电能质量。  相似文献   

9.
In this paper, sliding mode control (SMC) – direct power controller (DPC) based active and reactive power controller for three-phase grid-tied photovoltaic (PV) system is proposed. The proposed system consists of two main controllers: the DC/DC boost converter to track the possible maximum power from the PV panels and the grid-tied three-phase inverter. The Perturb and Observe (P&O) algorithm is used to transfer the maximum power from the PV panels. Control of the active and reactive powers is performed using the SMC-DPC strategy without any rotating coordinate transformations or phase angle tracking of the grid voltage. In addition, extra current control cycles are not used to simplify the system design and to increase transient performance. The fixed switching frequency is obtained by using space vector modulation (SVM). The proposed system provides very good results both in transient and steady states with the simple algorithms of P&O and SMC-DPC methods. Moreover, the results are evaluated by comparing the SMC-DPC method developed for MPPT and the traditional PI control method. The proposed controller method is achieved with TMS320F28335 DSP processor and the system is experimentally tested for 12 kW PV generation systems.  相似文献   

10.
A high power medium voltage converter for wind turbine system is presented in this paper. The proposal mitigates classic design tradeoffs around low voltage, high current link between the generator and the utility grid on the megawatt range. The power converter is based on Multilevel Converters technology which allows to extend the power-handling capability of the electronic switches, reaching the medium voltage operation without step-up transformers. The converter controllers are based on the Finite-States Model Predictive Control approach, leading to fast dynamic response and DC bus voltages equalization. The performance of the control scheme is evaluated with computer simulations.  相似文献   

11.
In the context of ameliorating the electrical vehicle dynamic, this paper suggests an on-line control based on multi-objective Particle-Swarm-Optimization (MOPSO). This control is applied to Fuel Cell (FC)/Ultra-Capacitor (UC) vehicle in order to enhance the dynamic system and to reduce fuel consumption. The traction system, comprising a permanent magnet synchronous motor (PMSM) as well as the main power source and the auxiliary energy device, is controlled using PI controllers. The regulators’ gains are adjusted by an energy management system based on off-line PSO, in the first step and on-line MOPSO in the second one. In order to demonstrate the effectiveness of the two proposed approaches, a New York City cycle profile is implemented as the reference speed of the vehicle model. Theoretical analysis and outcomes display that the on-line self-adjusted PI regulators by MOPSO established on the Integral Absolute Error (IAE) index contributes better to the power management system than conventional regulators based on the same index.  相似文献   

12.
This paper deals with the analysis of the possible adoption of a static synchronous compensator (STATCOM) with grid-connected constant-speed wind turbines. Three different cases are simulated using Matlab/Simulink for investigating wind-power impact on a power grid connected to wind turbines. The simulations yield information on (i) how the faults impact on the wind turbines and (ii) how the STATCOM influences the post-fault behaviour of the power system. In this paper, an attempt is made to compare the impact, in terms of voltages and active and reactive powers, of adding wind turbines and STATCOM to an electrical power grid. The simulations show that the goal of keeping turbines operational can be achieved.  相似文献   

13.
A new generation of load controllers enable stand-alone power systems (SAPS) to use one or many standard (grid connected) wind turbines. The controllers use fuzzy logic software algorithms. The strategy is to use the control loads to balance the flow of active power in the system and hence control system frequency. The dynamic supply of reactive power by a synchronous compensator maintains the system voltage within the limits specified in EN50160. The resistive controller loads produce a certain amount of heat that is exchanged down to the end user (hot water). It was decided to investigate the implementation of a hydrogen subsystem into the SAPS that can work in parallel with the Distributed Intelligent Load Controller (DILC). The hydrogen subsystem can then function as energy storage on long-term basis and an active load controller on short-term basis.  相似文献   

14.
Dynamic voltage restorer (DVR) is used to protect sensitive loads from voltage disturbances of the distribution generation (DG) system. In this paper, a new control approach for the 200 kW solar photovoltaic grid connected system with perturb and observe maximum power point tracking (MPPT) technique is implemented. Power quality improvement with comparison is conducted during fault with proportional integral (PI) and artificial intelligence-based fuzzy logic controlled DVR. MPPT tracks the actual variable DC link voltage while deriving the maximum power from a photovoltaic array and maintains DC link voltage constant by changing modulation index of the converter. Simulation results during fault show that the fuzzy logic based DVR scheme demonstrates simultaneous exchange of active and reactive power with less total harmonic distortion (THD) present in voltage source converter (VSC) current and grid current with fast tracking of optimum operating point at unity power factor. Standards (IEEE-519/1547), stipulates that the current with THD greater than 5% cannot be injected into the grid by any distributed generation source. Simulation results and validations of MPPT technique and operation of fuzzy logic controlled DVR demonstrate the effectiveness of the proposed control schemes.  相似文献   

15.
A new, utility-interactive hybrid distributed generation scheme, with reactive power compensation feature, is presented. The basic objective is to realize a reliable power supply for a remotely located critical load. Fuel cell (FC) stack and photovoltaic (PV) array are considered as energy sources. These sources can be operated independently or in conjunction as per the requirement. The control logic employed ensures maximum utilization of the PV array, resulting in optimum operational costs. Only one inverter is used to connect both the FC stack and the PV array to the utility. Apart from feeding active power into the grid, the system can also provide reactive power compensation. Active and reactive power can be independently controlled by controlling the inverter's power angle and modulation index, respectively. This provides more flexibility in control and operation. All the details of this work, including power and control circuits, MATLAB simulation results, and experimental results, are presented.  相似文献   

16.
This paper deals with the design of static compensator (STATCOM)-based voltage regulator for self-excited induction generators (SEIGs). SEIG has poor voltage regulation and it requires adjustable reactive power source with varying load to maintain constant terminal voltage. The required reactive power can be provided by a STATCOM consisting of ac inductors, a dc bus capacitor, and solid-state self-commutating devices. Selection and ratings of these components are quite important for design and control of STATCOM to regulate the terminal voltage of SEIG. The analysis, design, and selection of these STATCOM components are presented for five different rating machines to operate at varying power factor loads. Two criteria (full and reduced rating of STATCOM) are considered while designing STATCOM-SEIG systems.  相似文献   

17.
The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The control of the rotor-side converter is realized by stator flux oriented control, whereas the control of the grid-side converter is performed by a control strategy based on grid voltage orientation to maintain the DC-link voltage stability. An intelligent fuzzy inference system is proposed as an alternative of the conventional proportional and integral (PI) controller to overcome any disturbance, such as fast wind speed variation, short grid voltage fault, parameter variations and so on. Five fuzzy logic controllers are used in the rotor side converter (RSC) for maximum power point tracking (MPPT) algorithm, active and reactive power control loops, and another two fuzzy logic controllers for direct and quadratic rotor currents components control loops. The performances have been tested on 1.5 MW doubly-fed induction generator (DFIG) in a Matlab/Simulink software environment.  相似文献   

18.
Structural loads of wind turbines are becoming critical because of the growing size of wind turbines in combination with the required dynamic output demands. Wind turbine tower and blades are therefore affected by structural loads. To mitigate the loads while maintaining other desired conditions such as the optimization of power generated or the regulation of rotor speed, advanced control schemes have been developed during the last decade. However, conflict and trade‐off between structural load reduction capacity of the controllers and other goals arise; when trying to reduce the structural loads, the power production or regulation performance may be also reduced. Suitable measures are needed when designing controllers to evaluate the control performance with respect to the conflicting control goals. Existing measures for structural loads only consider the loads without referring to the relationship between loads and other control performance aspects. In this contribution, the conflicts are clearly defined and expressed to evaluate the effectiveness of control methods by introducing novel measures. New measures considering structural loads, power production, and regulation to prove the control performance and to formulate criteria for controller design are proposed. The proposed measures allow graphical illustration and numerical criteria describing conflicting control goals and the relationship between goals. Two control approaches for wind turbines, PI and observer‐based state feedback, are defined and used to illustrate and to compare the newly introduced measures. The results are obtained by simulation using Fatigue, Aerodynamics, Structures, and Turbulence (FAST) tool, developed by the National Renewable Energy Laboratory (NREL), USA.  相似文献   

19.
Different energy sources and converters need to be integrated to meet sustained load demands while accommodating various natural conditions. This paper focuses on the integration of photovoltaic (PV), fuel cell (FC) and ultra-capacitor (UC) systems for sustained power generation. In the proposed system, during adequate insolation, the PV system feeds the electrolyzer to produce hydrogen for future use and transfers energy to the load side if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. If the rate of load demand increases the outside limits of FC capability, the UC bank meets the load demand above that which is provided by PV and FC systems. The main contribution of this work is the hybridization of alternate energy sources with FC systems using long and short-term storage strategies with appropriate power controllers and control strategies to build an autonomous system, with a pragmatic design and dynamic model proposed for a PV/FC/UC hybrid power generation system. The model is developed and applied in the MATLAB®, Simulink® and SimPowerSystems® environment, based on the mathematical and electrical models developed for the proposed system.  相似文献   

20.
在分析双馈风机(DFIG)无功调节原理的基础上,根据最新的低电压穿越要求,建立优化的Crowbar控制策略,进而提出在电网严重故障期间内,Crowbar投入时由网侧变流器充当STATCOM为电网提供无功,Crowbar退出时无功输出继续由转子侧变流器励磁调节控制,推导出DFIG网侧及定子输出无功功率极限的表达式,结合优化的Crowbar控制策略研究DFIG的无功调节能力,最后利用RTDS平台进行仿真验证。结果表明,DFIG的无功调节能力与理论分析一致,在电网故障期间,应用此控制策略的DFIG可连续提供最大无功支持,且能帮助恢复电网电压。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号