首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Mg1.5Ti0.5−xZrxNi (x = 0, 0.1, 0.2, 0.3, 0.4), Mg1.5Ti0.3Zr0.1Pd0.1Ni and Mg1.5Ti0.3Zr0.1Co0.1Ni alloys were synthesized by mechanical alloying and their electrochemical hydrogen storage characteristics were investigated. X-ray diffraction studies showed that all the replacement elements (Ti, Zr, Pd and Co) perfectly dissolved in the amorphous phase and Zr facilitated the amorphization of the alloys. When the Zr/Ti ratio was kept at 1/4 (Mg1.5Ti0.4Zr0.1Ni alloy), the initial discharge capacity of the alloy increased slightly at all the ball milling durations. The further increase in the Zr/Ti ratio resulted in reduction in the initial discharge capacity of the alloys. The presence of Zr in the Ti-including Mg-based alloys improved the cyclic stability of the alloys. This action of Zr was attributed to the less stable and more porous characteristics of the barrier hydroxide layer in the presence of Zr due to the selective dissolution of the disseminated Zr-oxides throughout the hydroxide layer on the alloy surface. Unlike Co, the addition of Pd into the Mg–Ti–Zr–Ni type alloy improved the alloy performance significantly. The positive contribution of Pd was assumed to arise from the facilitated hydrogen diffusion on the electrode surface in the presence of Pd. As the Zr/Ti atomic ratio increased, the charge transfer resistance of the alloy decreased at all the depths of discharges. Co and Pd were observed to increase the charge transfer resistance of the Mg–Ti–Zr–Ni alloys slightly.  相似文献   

2.
Ti45Zr30Ni25Yx (x = 1, 3, 5 and 7) alloys were prepared by melt-spinning at wheel velocity of 20 m s−1. The effect of additive Y on phase structure and electrochemical performance of melt-spun alloys was investigated. Ti45Zr30Ni25Yx melt-spun alloys were composed of I-phase and amorphous phase. The amorphous phase increased with increasing x value, indicating amorphous forming ability improved with increasing Y content. The maximum discharge capacity and high-rate dischargeability decreased with increasing x value, which may be ascribed to the decrease of nickel content. Cycling stability first increased with increasing x from 1 to 3, and then decreased when x increased to 7, which was resulted from the combined effect of the decrease of nickel content and the increase of amorphous phase.  相似文献   

3.
Ti45Zr35Ni20−xPdx (x = 0, 1, 3, 5 and 7, at%) alloys were prepared by melt-spinning. The phase structure and electrochemical hydrogen storage performances of melt-spun alloys were investigated. The melt-spun alloys were icosahedral quasicrystalline phase, and the quasi-lattice constant increased with increasing x value. The maximum discharge capacity of alloy electrodes increased from 79 mAh/g (x = 0) to 148 mAh/g (x = 7). High-rate dischargeability and cycling stability were also enhanced with the increase of Pd content. The improvement in the electrochemical hydrogen storage characteristics may be ascribed to better electrochemical activity and oxidation resistance of Pd than that of Ni.  相似文献   

4.
5.
The effects of different components in Cu1Zr1Ce9Oδ catalyst and the variations of the feed stream on the catalytic performance of selective CO oxidation were investigated by diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) technique. It is found that the active sites of Cu1Zr1Ce9Oδ catalyst are mainly Cu+ species. Formate species is formed through the reaction between CO gas and hydroxyl groups on the reduced cerium surface. CeO2 in the Cu1Zr1Ce9Oδ catalyst facilitates the formation of Cu+ species and improves the amount of CO adsorption whereas it is unfavorable to the deep reduction of Cu+ species. ZrO2 doped into the Cu1Zr1Ce9Oδ catalyst increases the Cu coverage and CO adsorption capacity, while it decreases the adsorption of CO2 on the catalyst surface. The adsorption capacities of oxygen and CO are associated with the catalytic performance for the selective CO oxidation at lower and higher temperatures, respectively. The presence of CO in the feed stream promotes the reduction of Ce4+ species and the production of geminal OH group on the reduced ceria surface. Hydrogen in the feed diminishes the CO adsorption ability but stimulates the CO desorption. CO2 in the feed occupies the active sites and decreases the adsorption of the reactants, thus deteriorates the catalytic performance for the selective CO oxidation.  相似文献   

6.
A first investigation into the production of amorphous and nanostructured Ti-based alloys with nominal compositions Ti41.5Zr41.5Ni17, Ti61Zr22Ni17, Ti41.5V41.5Ni17 and Ti61V22Ni17 by mechanical alloying (MA) technique is presented. This technique was adopted to produce alloys' powders with high fresh surface area that were active for hydrogen storage. Hydrogen absorption characteristics and structure changes in the alloys after hydrogenation were investigated. Gas phase hydrogenation of the Ti–Zr–Ni alloys, at 573 K and an initial hydrogen pressure of 2 MPa, exhibited good hydriding properties and started at a maximal rate without induction period with a hydrogenation capacity up to 1.2 wt%. However, hydriding of Ti–V–Ni alloys at the same conditions exhibited slower rates. The Ti61V22Ni17 composition showed high hydrogen absorption capacity of 1.8 wt% and exceeded 4 wt% at 345 K. In addition, the Ti–V–Ni alloys showed structure stability after hydrogenation and retained the amorphous structure.  相似文献   

7.
Commercial alloy ZK60 (Mg-6 wt%Zn-0.8 wt% Zr) was used as a hydrogen-storage material to study the effect of cold rolling, ball milling, and plus graphite additives on hydrogen-storage characteristics, hydrogen absorption–desorption behavior, and the related microstructural change of the alloy. Experimental results showed that cold-rolled alloy could not be activated easily. Even after ball milling for 20 h and hydrogen absorption–desorption cycling for 10 times, no saturated hydrogen absorption was observed for cold-rolled alloy. In contrast, alloys with 5 wt% graphite additives could be easily activated after the first hydrogen absorption–desorption cycle, and a saturated hydrogen absorption of 6.9 wt% was obtained after absorption–desorption cycling for five times. A hydrogen absorption of 5.52 wt%, equivalent to 80% of the saturated absorption amount, was measured in 5 min, showing a hydrogen absorption rate of 1.104 wt%/min. The sample reached saturation in 30 min.  相似文献   

8.
Hydrogen is one of the best alternative to petroleum as an energy carrier. However, the development of a Hydrogen-based economy requires commercialization of safe and cost-effective Hydrogen storage system. In this paper, alloys belonging to Mg–Zr–Mn–Ni alloy system are synthesized using high energy ball milling method. The particle size evolution, chemical analysis and nano-scaled structures were characterized by using SEM, EDXS and XRD techniques, respectively. The optimized - highest hydrogen storing - alloy has particle size of about 8.36 ± 1.17 μm with crystallite size 16.99 ± 5.48 nm. Hydrogen absorption-desorption measurement is carried out on the principle of pressure reduction method. The alloy coded with MZ1 shows uptake of greater than 7 mass % H2 at a charging temperature of 200 °C, indicating high gravimetric hydrogen storage capacity at relatively lower hydriding temperature. The optimized Mg–Zr–Mn–Ni alloy also shows considerably enhanced hydriding – dehydriding kinetics, compare to pure Mg.  相似文献   

9.
A series of multi-component Zr1−xTixV0.4Ni1.2Mn0.4LMy (x=0.3, 0.4; y=0.0,0.02,0.05,0.1,0.2,0.3, LM; lantanum-rich-mischmetal) alloys are prepared and their crystal structure and PCT curves are analyzed. The alloys have been modified by adding LM and their gaseous and electrochemical hydrogenation properties are studied to find out the effect of LM elements. Also, the second phase and initial activation performance are investigated. The Zr1−xTixV0.4Ni1.2Mn0.4LMy (x=0.3,0.4; y=0.0,0.02,0.05,0.1,0.2,0.3) alloys have C14 Laves phase hexagonal structure, so the volume expansion ratio of lattice parameters with LM has increased. As the amount of LM in alloy has increased, correspondingly the second phase is also increased. The second phase is LM, Ti and V-rich. The second phase improve the activation of La-rich misch-metal, and also the concentration of elements Ti, V〉LM〉 matrix in alloys.The addition of LM in Zr1−xTixV0.4Ni1.2Mn0.4LMy (x=0.3, 0.4) alloys have increased the activation rate and hydrogen storage capacity significantly, but the plateau pressure and the discharge capacity have been decreased due to the formation of second phase. For more Zr in electrode alloys, the activation of rate becomes slow.  相似文献   

10.
The non-stoichiometric C15 Laves phase alloys namely Zr0.9Ti0.1Vx (x = 1.7, 1.8, 1.9, 2.1, 2.2, 2.3) are designed and expected to investigate the role of defect and microstructure on hydrogenation kinetics of AB2 type Zr-based alloys. The alloys are prepared by non-consumable arc melting in argon atmosphere and annealed at 1273 K for 168 h to ensure the homogeneity. The microstructure and phase constitute of these alloys are examined by SEM, TEM and XRD. The results indicate the homogenizing can reduce the minor phases α-Zr and abundant V solid solution originating from the non-equilibrium solidification of as-cast alloys. Twin defects with {111}<011 > orientation relationship are observed, and the role of defects on hydrogenation kinetics is discussed. Hydrogen absorption PCT characteristics and hydrogenation kinetics of Zr0.9Ti0.1Vx at 673–823 K are investigated by the pressure reduction method using a Sievert apparatus. The results show the hypo-stoichiometric alloys preserve faster hydrogenation kinetics than the hyper-stoichiometric ones due to the decrease of dendritic V. The excess content of Zr3V3O phase decreases the hydrogenation kinetics and the stability of hydrides. In addition, the different rate controlled mechanisms during hydrogen absorption are analyzed. The effects of non-stoichiometry on the crystal structure and hydrogen storage properties of Zr0.9Ti0.1Vx Laves alloys are discussed.  相似文献   

11.
12.
《Journal of power sources》1999,77(2):159-163
The P–C–I and charging–discharging properties of three Ti–Zr based alloys have been studied. Ni substitution for Mn and Cr in the alloy was found to increase the plateau pressure of the P–C–I curve. In addition, the partial substitution of Cr by V greatly improved the discharge capacity. However, the six-element alloy, Ti0.5Zr0.5V0.2Mn0.7Cr0.5Ni0.6, degraded rapidly in the gas–solid reaction. Hydrogen contents in the alloy under low pressure were increased during hydrogen absorption–desorption cycling. Annealing at 1050°C for 4 h before the P–C–I experiment helped in releasing the retained hydrogen under low pressure. Only a slightly flattened P–C–I slope was obtained for the annealed alloy. Microstructures of the as-cast and annealed alloys were examined and related to the above results. Alloy powder was poisoned after 2-month storage in air, which resulted in the deterioration of discharge capacity. Surface pretreatment on alloy powders by HCl–HF solution decreased the activation time of charge–discharge reaction.  相似文献   

13.
Cubic Co–La–Zr–B nano particles were prepared in situ for the first time from the reduction of Co(II), La(III) and Zr(IV) chloride by sodium borohydride in methanol under reflux condition. Poly N-vinyl-2-pyrrolidone (PVP) as stabilizing agent was used for preparation of Co–La–Zr–B nano particles. Obtained powders were characterized by XRD, BET, ICP, SEM, TEM and UV–vis techniques. XRD patterns declare that under argon atmosphere only metalboride phase has been crystallized and it was not seen any oxide phase of metals. TEM image depicts that PVP stabilized nano particles are square shaped particles that containing many nanoclusters. Cubic Co–La–Zr–B nano particles were also confirmed by SEM image. Co–La–Zr–B is highly active catalysts for hydrogen generation from the hydrolysis of sodium borohydride. The reported work also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy (Ea = 53 kJ mol−1) and effects of the catalyst dosage, amount of NaBH4, and temperature on the rate of the catalytic hydrolysis of sodium borohydride. Catalytic hydrolysis of NaBH4 is first order with respect to the catalyst concentration and also first order to the NaBH4 concentration in the case of cubic Co–La–Zr–B nano particles.  相似文献   

14.
Elemental substitution of part Ti by Zr has been carried out for Ti2Ni alloy to form Ti2−xZrxNi (x = 0, 0.2, 0.4) alloys. Mechanical milling and subsequent heat treatment have been used to prepare non-equilibrium Ti–Zr–Ni alloys. The effects of Zr addition on the structure and discharge properties of Ti2Ni alloy were investigated. The addition of Zr could enhance the discharge capacity of the non-equilibrium Ti2Ni alloy at electrolyte temperatures of 313 and 333 K. For instance, the non-equlibrium Ti1.6Zr0.4Ni alloy had a stable discharge capacity of about 210 mAh/g at 313 K. However, the protective surface layer formed during heat treatment was destroyed at a high electrolyte temperature of 333 K, and thus a severe capacity loss during cycling.  相似文献   

15.
First-principles calculation reveals that the HCP ZrHx phase with H at tetrahedral (T) site is the most energetically favorable among all the HCP, FCC, and BCC structures when 0 ≤ x < 0.337, while the FCC phases with H at octahedral (O) and T sites are relatively more stable when 0.337 ≤ x < 0.595 and 0.595 ≤ x ≤ 1, respectively. Calculation also shows that H location has important effects on mechanical properties of various ZrHx phases, and that the HCP and FCC ZrHx phases with H at the T site within the concentration ranges of 0.2 ≤ x < 0.337 and 0.595 ≤ x ≤ 1, respectively, are more brittle than pure HCP Zr, which would give a reasonable explanation to the brittleness and delayed hydride cracking of Zr alloys observed experimentally in the literature. In addition, two anisotropic indexes are used to express the elastic anisotropy of various ZrHx phases, and a strong correlation is found between structural stability and elastic anisotropy of the ZrHx phases.  相似文献   

16.
Nannochloropsis sp., one kind of green microalgae cultivated autotrophically and axenically in laboratory, is used as raw material to produce biodiesel by one-step method in an amended reactor. The effects of several reaction parameters on transesterification over Mg–Zr solid base catalyst were investigated through both conventional method and one-step method. One-step method could give a higher yield of methyl ester than conventional two-step method, which demonstrates that the present one-step method is suitable for biodiesel production from the microalgae Nannochloropsis sp. Moreover, the present one-step method realizes the convenient in situ separation of catalyst from microalgae residue which can be easily used consequently, reducing the procedure units as well as the overall costs.  相似文献   

17.
Rapidly quenched Zr2Ni amorphous and nanocrystalline ribbons were studied as electrocatalysts for hydrogen evolution in 6 M KOH. Linear polarization, potentiostatic hydrogen charge/discharge and EIS measurements at various potentials were carried out for the Zr alloys with different microstructure with the aim to extract information about the mechanism of hydrogen evolution and absorption and estimate the kinetic parameters of the hydrogen evolution reaction (HER). Though the melt-spun Zr67Ni33 alloys with varying microstructure do not show substantially different catalytic activity for HER, it could be clearly demonstrated that the nanocrystalline material reveals better catalytic performance than the entirely amorphous and nano-/amorphous alloys with the same chemical composition. It was found that all studied Zr–Ni alloys absorb hydrogen under the conditions of the hydrogen evolution experiments, as the amount of the absorbed hydrogen depends to a large degree on the alloys microstructure as well as on the applied potential during the HER experiment. The diffusion coefficient of hydrogen into the amorphous Zr67Ni33 alloy, as well as the thickness of the hydrided layer were found to be noticeably larger than those of the nanocrystalline alloy at the same conditions of hydrogen charging. Therefore the improved electrocatalytic properties of the nanocrystalline alloy could only be explained by its favorable microstructure (e.g. higher density of defects) and weaker hydrogen absorption into the nanostructured material under the conditions of the HER.  相似文献   

18.
Ammonia decomposition is an effective way for high purity hydrogen production, yet the increase of catalytic activity at low temperatures remains a big challenge for this process. In this paper, a CeO2–ZrO2 composite with Al as the secondary dopant was synthesized by the co-precipitation method, which was used as the carrier of nickel metal for ammonia decomposition. The experimental results showed that an obvious increase in catalytic activity of the ammonia decomposition at the relatively low temperature range of 450–550 °C was achieved over the nickel catalyst with CeO2–ZrO2 composite as the metal carrier. Specifically, the complete decomposition of ammonia was achieved at 580 °C for Ni/Al–Ce0.8Zr0.2O2 catalyst, while only 92% of ammonia was decomposed at 600 °C over the reference Ni/Al2O3 catalyst. The characterization results indicated that the introduction of Al as the secondary dopant of ceria not only increases the specific surface area and oxygen defects on the surface, but also enhances the nickel metal dispersion and metal-support interaction, thus enhances the catalytic performance of Ni/Al–Ce0.8Zr0.2O2 catalyst in the ammonia decomposition.  相似文献   

19.
Nitrogen-incorporated lithium silicophosphate (LiSiPON) thin-film electrolytes, which contain two glass-forming elements, are fabricated by sputtering from a (1−x)Li3PO4·xLi2SiO3 target in a nitrogen reactive plasma. The results of impedance measurements show that the activation energy for conduction decreases as the Si content increases, which leads to an increase in the ionic conductivity of the films. It is suggested that these improvements in the electrical properties of the films are due to the combined effect of the mixed former and nitrogen incorporation. It appears that the decomposition potential of the electrolyte film in contact with Pt is about 5.5 V.  相似文献   

20.
Mg–Li, Mg–Li–Al and Mg–Li–Al–Ce alloys were prepared and their electrochemical behavior in 0.7 M NaCl solutions was investigated by means of potentiodynamic polarization, potentiostatic current–time and electrochemical impedance spectroscopy measurements as well as by scanning electron microscopy examination. The effect of gallium oxide as an electrolyte additive on the potentiostatic discharge performance of these magnesium alloys was studied. The discharge activities and utilization efficiencies of these alloys increase in the order: Mg–Li < Mg–Li–Al < Mg–Li–Al–Ce, both in the absence and presence of Ga2O3. These alloys are more active than commercial magnesium alloy AZ31. The addition of Ga2O3 into NaCl electrolyte solution improved the discharging currents of the alloys by more than 4%, and enhanced the utilization efficiencies of the alloys by more than 6%. It also shortened the transition time for the discharge current to reach to a steady value. Electrochemical impedance spectroscopy measurements showed that the polarization resistance of the alloys decreases in the following order: Mg–Li > Mg–Li–Al > Mg–Li–Al–Ce. Mg–Li–Al–Ce exhibited the best performance in term of activity, utilization efficiency and activation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号