首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
This paper evaluates the option of using a new powertrain based on fuel cell (FC), battery and supercapacitor (SC) for the Urbos 3 tramway in Zaragoza, Spain. In the proposed powertrain configuration, a hydrogen Proton-Exchange-Membrane (PEM) FC acts as main energy source, and a Li-ion battery and a SC as energy support and storage systems. The battery supports the FC during the starting and accelerations, and furthermore, it absorbs the power generated during the regenerative braking. Otherwise, the SC, which presents the fastest dynamic response, acts mainly during power peaks, which are beyond the operating range of the FC and battery. The FC, battery and SC use a DC/DC converter to connect each energy source to the DC bus and to control the energy exchange. This configuration would allow the tramway to operate in an autonomous way without grid connection. The components of the hybrid tramway, selected from commercially available devices have been modeled in MATLAB-Simulink. The energy management system used for controlling the components of the new hybrid system allows optimizing the fuel consumption (hydrogen) by applying an equivalent consumption minimization strategy. This control system is evaluated by simulations for the real driving cycle of the tramway. The results show that the proposed control system is valid for its application to this hybrid system.  相似文献   

2.
This research presents an optimum design scheme and a hierarchical energy management strategy for an island PV/hydrogen/battery hybrid DC microgrid (MG). In order to efficiently utilize this DC MG, the optimum structure and sizing scheme are designed by HOMER pro (Hybrid Optimization of Multiple Energy Resources) software. The designed structure of hydrogen MG includes a PV generation, a battery as well as a hydrogen subsystem which composes a fuel cell (FC) system, an electrolyzer and hydrogen tank. To improve the robustness and economy of this DC MG, this study schedules a hierarchical energy management method, including the local control layer and the system control layer. In the local control layer, the subsystems in this DC MG are controlled based on their inherent operating characteristics. And the equivalent consumption minimization strategy (ECMS) is applied in the system control layer, the power flow between the battery and FC is allocated to minimum the fuel consumption. An island DC MG hardware-in-loop (HIL) Simulink platform is established by RT-LAB real-time simulator, and the simulation results are presented to validate the proposed energy management strategy.  相似文献   

3.
The hybrid powerplant combining a fuel cell and a battery has become one of the most promising alternative power systems for electric unmanned aerial vehicles (UAVs). To enhance the fuel efficiency and battery service life, highly effective and robust online energy management strategies are needed in real applications.In this work, an energy management system is designed to control the hybrid fuel cell and battery power system for electric UAVs. To reduce the weight, only one programmable direct-current to direct-current (dcdc) converter is used as the critical power split component to implement the power management strategy. The output voltage and current of the dcdc is controlled by an independent energy management controller. An executable process of online fuzzy energy management strategy is proposed and established. According to the demand power and battery state of charge, the online fuzzy energy management strategy produces the current command for the dcdc to directly control the output current of the fuel cell and to indirectly control the charge/discharge current of the battery based on the power balance principle.Another two online strategies, the passive control strategy and the state machine strategy, are also employed to compare with the proposed online fuzzy strategy in terms of the battery management and fuel efficiency. To evaluate and compare the feasibility of the online energy management strategies in application, experiments with three types of missions are carried out using the hybrid power system test-bench, which consists of a commercial fuel cell EOS600, a Lipo battery, a programmable dcdc converter, an energy management controller, and an electric load. The experimental investigation shows that the proposed online fuzzy strategy prefers to use the most power from the battery and consumes the least amount of hydrogen fuel compared with the other two online energy management strategies.  相似文献   

4.
针对光伏并网系统中光伏微电源出力的波动性和间歇性,将蓄电池和超级电容器构成的混合储能系统HESS(hybrid energy storage system)应用到光伏并网系统中可以实现光伏功率平滑、能量平衡以及提高并网电能质量。在同时考虑蓄电池的功率上限和超级电容的荷电状态(SOC)的情况下,对混合储能系统提出了基于超级电容SOC的功率分配策略;该策略以超级电容的SOC和功率分配单元的输出功率作为参考值,对混合储能系统充放电过程进行设计。超级电容和蓄电池以Bi-direction DC/DC变换器与500 V直流母线连接,其中超级电容通过双闭环控制策略对直流母线电压进行控制。仿真结果表明,所提功率分配策略能对混合储能系统功率合理分配,而且实现了单位功率因数并网,稳定了直流母线电压。  相似文献   

5.
In this paper, modeling, control and power management (PM) of hybrid Photovoltaic Fuel cell/Battery bank system supplying electric vehicle is presented. The HPS is used to produce energy without interruption. It consists of a photovoltaic generator (PV), a proton exchange membrane fuel cell (PEMFC), and a battery bank supplying an electric vehicle of 3 kW. In our work, PV and PEMFC systems work in parallel via DC/DC converter and the battery bank is used to store the excess of energy. The mathematical model topology and it power management of HPS with battery bank system supplying electric vehicle (EV) are the significant contribution of this paper. Obtained results under Matlab/Simulink and some experimental ones are presented and discussed.  相似文献   

6.
With the fast development of DC Microgrid (MG) technology, its operating economy and reliability are getting more and more concern. The traditional distributed control method is aimed at power balance and system stability, and is difficult to meet the requirement of energy management system for multi-source hybrid DC MG. This paper provides a two-level energy management strategy for PV-fuel cell-battery-based DC MG, which is divided into device control level and system control level. At the device control level, the distributed control methods based on MPPT-droop dual-mode control and droop control are proposed to enhance system reliability; at the system control level, the equivalent consumption minimization strategy (ECMS) is used to distribute system net power between battery pack and fuel cell system. A lab-scale DC microgrid platform is developed to verify the proposed energy management strategy in this paper. Moreover, the analysis and compare of the results show that the proposed two-level energy management strategy can achieve lower equivalent hydrogen consumption than classical PI control and state machine control method.  相似文献   

7.
This paper describes a comparative study of two control schemes for the energy management system of a hybrid tramway powered by a Polymer Electrolyte Membrane (PEM) Fuel Cell (FC) and an Ni-MH battery. The hybrid system was designed for a real surface tramway of 400 kW. It is composed of a PEM FC system with a unidirectional dc/dc boost converter (FC converter) and a rechargeable Ni-MH battery with a bidirectional dc/dc converter (battery converter), both of which are coupled to a traction dc bus. The PEM FC and Ni-MH battery models were designed from commercially available components.  相似文献   

8.
This paper aims to define a control and management strategy for water pumping system which would be powered by a hybrid PV/diesel generator system with battery storage. The particularity of the proposed power management method is to ensure the water volume in need and to maximize the use of PV generator while limiting the use of the diesel generator. In order to capture the maximum power from PV generator, a fuzzy logic maximum power point tracking controller is applied. On the other hand, a PI regulator is used with a boost converter in order to adapt the voltage of the battery bank to the DC bus. The water flow of the pump is also controlled. The developed power management and control strategy has been implemented using SIMPOWER toolbox in Matlab/Simulink. The obtained satisfying simulation results prove the efficiency of the proposed solution that assures continuous supply of water and electricity.  相似文献   

9.
This paper describes an energy management algorithm for an electrical hybrid vehicle. The proposed hybrid vehicle presents a fuel cell as the main energy source and the storage system, composed of a battery and a supercapacitor as the secondary energy source. The main source must produce the necessary energy to the electrical vehicle. The secondary energy source produces the lacking power in acceleration and absorbs excess power in braking operation. The addition of a supercapacitor and battery in fuel cell-based vehicles has a great potential because it allows a significant reduction of the hydrogen consumption and an improvement of the vehicle efficiency. Other the energy sources, the electrical vehicle composed of a traction motor drive, Inverter and power conditioning. The last is composed of three DC/DC converters: the first converter interfaces the fuel cell and the DC link. For the second and the third converter, two buck boost are used in order to interface respectively the ultracapacitor and the battery with the DC link. The energy management algorithm determines the currents of the converters in order to regulate accurately the power provided from the three electrical sources. This algorithm is simulated with MATLAB_Simulink and implemented experimentally with a real-time system controller based on dSPACE. In this paper, the proposed algorithm is evaluated for the New European Driving Cycle (NEDC). The experimental results validate the effectiveness of the proposed energy management algorithm.  相似文献   

10.
This research develops an efficient and robust polymer electrolyte membrane (PEM) fuel cell/battery hybrid operating system. The entire system possesses its own rapid dynamic response benefited from hybrid connection and power split characteristics due to DC/DC buck-boost converter. An indispensable energy management system (EMS) plays a significant role in achieving optimal fuel economy and in a promising running stability. EMS as an indispensable part plays a significant role in achieving optimal fuel economy and promising operation stability. This study aims to develop an adaptive supervisory EMS that comprises computer-aided engineering tools to monitor, control, and optimize the performance of the hybrid power system. A stationary fuel cell/battery hybrid operating system is optimized using adaptive-Pontryagin's minimum principle (A-PMP). The proposed algorithm depends on the adaptation of the control parameter (i.e., fuel cell output power) from the state of charge (SOC) and load power feedback. The integrated model simulated in a Matlab/Simulink environment includes the fuel cell, battery, DC/DC converter, and power requirements models by analyzing the three different load profiles. Real-time experiments are performed to verify the effectiveness of EMS after analyzing the simulated operating principle and control scheme.  相似文献   

11.
In this paper, a fuel-cell (FC)/battery hybrid direct-current (DC) backup power system is proposed for high step-up applications. This system is composed of a newly developed non-isolated three-port converter, which achieves a high voltage gain by taking the advantage of a quasi Z-source network and an energy transfer capacitor. After analyzing the converter, a comprehensive comparison study and a design procedure are provided. Moreover, the controllers regulating the source power levels while smoothing the FC power profile according to the proposed energy management strategy (EMS) are designed based on the developed small-signal model of the proposed converter. Both hardware and controller design procedures are validated through the PSIM model of the whole system. As a result, it is shown that the proposed system can effectively couple FC and battery while transferring their energies to a high voltage DC bus according to the offered EMS.  相似文献   

12.
《Journal of power sources》2006,159(2):1205-1213
Three fuel cell city buses of the energy hybrid- and power hybrid-type were re-engineered with three types of drivetrain configuration to optimize the structure and improve the performance. The energy distribution, hydrogen consumption, state of charge (SOC) and the power variation rate were analyzed when different drivetrain configurations and parameters were used. When powered only by a fuel cell, the bus cannot recover the energy through regenerative braking. The variation of the fuel cell power is large and frequent, which is not good for the fuel cell. When the fuel cell is linked to a battery pack in parallel, the bus can recover the energy through regenerative braking. The energy distribution is determined by the parameters of the fuel cell and the battery pack in the design stage to reduce the power variation rate of the fuel cell. When the fuel cell and DC/DC converter connected in series links the battery pack in parallel, energy can be recovered and the energy distribution can be adjusted online. The power variation rate of both the fuel cell and the battery pack are reduced.  相似文献   

13.
文章提出了一种光伏电力混合储能系统的能量管理控制策略,主要应用于含有光伏电源(Photovoltaic,PV)、电池能量存储(Battery Energy Storage, BES)和交流负载的发电网络系统中。该策略能够充分利用电力系统中组合架构之间的连接关系,有效缓解了目前电网中BES系统存在的过充电、欠充电等问题,并将充放电电流控制在一个相对稳定的范围内,延长了电池的使用寿命。分别在含有传统铅酸和锂离子电池的混合能量系统中使用6 kVA电源转换器进行实验,结果证明了所提出的能量管理策略的正确性和有效性。  相似文献   

14.
In this paper, a hierarchical energy management strategy (EMS) based on low-pass filter and equivalent consumption minimization strategy (ECMS) is proposed in order to lift energy sources lifespan, power performance and fuel economy for hybrid electrical vehicles equipped with fuel cell, battery and supercapacitor. As for the considered powertrain configuration, fuel cell serves as main energy source, and battery and supercapacitor are regarded as energy support and storage system. Supercapacitor with high power density and dynamic response acts during great power fluctuations, which relives stress on fuel cell and battery. Meanwhile, battery is used to lift the economy of hydrogen fuel. In higher layer strategy of the proposed EMS, supercapacitor is employed to supply peak power and recycle braking energy by using the adaptive low-pass filter method. Meantime, an ECMS is designed to allocate power of fuel cell and battery such that fuel cell can work in a high efficient range to minimize hydrogen consumption in lower layer. The proposed EMS for hybrid electrical vehicles is modeled and verified by advisor-simulink and experiment bench. Simulation and experiment results are given to confirm effectiveness of the proposed EMS of this paper.  相似文献   

15.
This paper presents the experimental results of an actively controlled fuel cell/battery hybrid power source topology that can be widely used in many applications, such as portable electronic devices, communication equipment, spacecraft power systems, and electric vehicles, in which the power demand is impulsive rather than constant. A step-down DC/DC power converter is incorporated to actively control the power flow between the fuel cell and the battery to achieve both high power and high energy densities. The results show that the hybrid power source can achieve much greater specific power and power density than the fuel cell alone. This paper first demonstrates that an actively controlled hybrid with a 35 W hydrogen-fueled polymer electrolyte membrane fuel cell and a lithium-ion battery pack of six cells yielded a peak power of 100 W, about three times as high as the fuel cell alone can supply, while causing a very limited (10%) weight increase to the whole system. After that, another hybrid source using a different battery array (eight cells) was investigated to further validate the control strategy and to show the flexibility and generality of the hybrid source design. The experimental data show that the hybrid source using an eight-cell battery supplied a peak power of 135 W, about four times that of the fuel cell alone. Finally, three power sources including the fuel cell alone and the two hybrids studied were compared in terms of specific power, power density, volume, weight, etc. The design presented here can be scaled to larger or smaller power capacities for a variety of applications.  相似文献   

16.
This paper describes a DC isolated network which is fed by distributed generation (DG) from photovoltaic (PV) renewable sources to supply unbalanced AC loads. The battery energy storage bank has been connected to the DC network via DC/DC converter called storage converter to control the network voltage and optimize the operation of the PV generation units. The PV units are connected to the DC network via its own DC/DC converter called PV converter to ensure the required power flow. The unbalanced AC loads are connected to the DC network via its own DC/AC converter called load converter without transformer. This paper proposes a novel control strategy for storage converter which has a DC voltage droop regulator. Also a novel control system based on Clarke and Park rotating frame has been proposed for load converters. In this paper, the proposed operation method is demonstrated by simulation of power transfer between PV units, unbalanced AC loads and battery units. The simulation results based on PSCAD/EMTDC software show that DC isolated distribution system including PV units can provide the balanced voltages to supply unbalanced AC loads.  相似文献   

17.
This paper presented a system design review of fuel cell hybrid vehicle. Fuel supply, hydrogen storage, DC/DC converters, fuel cell system and fuel cell hybrid electric vehicle configurations were also reviewed. We explained the difference of fuel supply requirement between hydrogen vehicle and conventional vehicles. Three different types of hydrogen storage system for fuel supply are briefly introduced: high pressure, liquid storage and metal oxides storage. Considering of the potential risk of explosion, a security hydrogen storage system is designed to restrict gas pressure in the safe range. Due to the poor dynamic performance of fuel cells, DC/DC converters were added in hybrid vehicle system to improve response to the changes of power demand. Requirements that in order to select a suitable DC/DC converter for fuel-cell vehicles design were listed. We also discussed three different configurations of fuel-cell hybrid vehicles: “FC + B”, “FC + C”, and “FC + B + C”, describing both disadvantages and advantages. “FC + B + C” structure has a better performance among three structures because it could provide or absorb peak current during acceleration and emergency braking. Finally, the energy management strategies of fuel cell and were proposed and the automotive energy power requirement of an application example was calculated.  相似文献   

18.
This paper presents a sizing method and different control strategies for the suitable energy management of a stand-alone hybrid system based on photovoltaic (PV) solar panels, hydrogen subsystem and battery. The battery and hydrogen subsystem, which is composed of fuel cell (FC), electrolyzer and hydrogen storage tank, act as energy storage and support system. In order to efficiently utilize the energy sources integrated in the hybrid system, an appropriate sizing is necessary. In this paper, a new sizing method based on Simulink Design Optimization (SDO) of MATLAB was used to perform a technical optimization of the hybrid system components. An analysis cost has been also performed, in that the configuration under study has been compared with those integrating only batteries and only hydrogen system. The dynamic model of the designed hybrid system is detailed in this paper. The models, implemented in MATLAB-Simulink environment, have been designed from commercially available components. Three control strategies based on operating modes and combining technical-economic aspects are considered for the energy management of the hybrid system. They have been designed, primarily, to satisfy the load power demand and, secondarily, to maintain a certain level at the hydrogen tank (hydrogen energy reserve), and at the state of charge (SOC) of the battery bank to extend its life, taking into account also technical-economic analysis. Dynamic simulations were performed to evaluate the configuration, sizing and control strategies for the energy management of the hybrid system under study in this work. Simulation results show that the proposed hybrid system with the presented controls is able to provide the energy demanded by the loads, while maintaining a certain energy reserve in the storage sources.  相似文献   

19.
Hybrid electric power systems based on fuel cell stack and energy storage sources like batteries and ultracapacitors are a plausible solution to vehicle electrification due to their balance between acceleration performance and range. Having a high degree of hybridization can be advantageous, considering the different characteristics of the power sources. Some parameters to be considered are: specific power and energy, energy and power density, lifetime, cost among others. Ultracapacitors (UC) are of particular interest in electric vehicle applications due to its high-power capability, which is commonly required during acceleration. UCs are commonly used without a power electronics interface due to the high-power processing requirement. Although connecting UCs directly to the DC bus, without using a power converter, presents considerable advantages, the main disadvantage is related to the UC energy-usage capability, which is limited by constant DC bus control. This paper proposes a novel energy-management strategy based on a fuzzy inference system, for fuel-cell/battery/ultracapacitor hybrid electric vehicles. The proposed strategy is able to control the charge and discharge of the UC bank in order to take advantage of its energy storage capability. Experimental results show that the proposed strategy reduces the waste of energy due to dynamic brake in 14%. This represents a reduction in energy consumption from 218 Wh/km to 192 Wh/km for the same driving conditions. By using the proposed energy management strategy, the estimated fuel efficiency in miles per gallon equivalent was also increase from 96 mpge to 109 mpge.  相似文献   

20.
This paper concentrates on the issues with the aim of providing a constant dc‐link voltage and desired power sharing for a distributed energy storage system (DESS)‐based hybrid microgrid under load variations. The hybrid microgrid which is consisted of PV system, lithium battery‐based storage system and a grid‐connected dc/ac converter are controlled by designing a controller based on the zero dynamics‐based mathematical equations of all used converters. Two buck and bidirectional buck‐boost dc/dc converters employed in PV and DESS systems, respectively, are responsible for damping the dc‐link voltage fluctuations, and also the grid‐connected converter is set to enhance the grid power quality and supply continuously the grid‐connected loads. The main contributions of the proposed control technique are simplicity and providing the simultaneous stable performance for both DC and AC sides under both DC and grid‐connected loads variations. Moreover, another contribution of the proposed control technique is providing accurate coordination in both steady‐state and dynamic conditions. To analyze the proposed controller, the dynamic operations of the converters in various operating conditions are evaluated. In this evaluation, several curves based on their zero dynamics are achieved, and their desired operations are completely investigated in different operating conditions. Simulation results in MATLAB/SIMULINK verify the proposed controller ability at reaching the desired zero dynamics and the stable performance of the proposed hybrid microgrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号