首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文综述了改善HCCI低负荷着火添加剂的研究进展,着重介绍了添加剂的选择依据及添加剂改善着火的作用机理.本文指出二烷基过氧化物类燃油添加剂具有良好的应用前景和下一步需要解决的问题.  相似文献   

2.
This paper experimentally investigates the influence of hydrogen enrichment on the combustion and emission characteristics of a diesel HCCI engine using a modified Cooperative Fuel Research (CFR) engine. Three fuels, n-heptane and two middle distillates with cetane numbers of 46.6 and 36.6, are studied.The results show that hydrogen enrichment retards the combustion phasing and reduces the combustion duration of a diesel HCCI engine. Besides, hydrogen enrichment increases the power output and fuel conversion efficiency, and improves the combustion stability. However, hydrogen enrichment may narrow the operational compression ratio range and increase the knocking tendency. Both the overall indicated specific CO emissions (isCO) and CO emissions per unit burned diesel fuel mass are reduced by hydrogen enrichment. Although hydrogen enrichment decreases the overall indicated specific unburned hydrocarbon emissions (isHC), it does not significantly affect the HC emissions per unit burned diesel fuel mass.  相似文献   

3.
Fuel stratification has the potential to extend the high load limits of homogeneous charge compression ignition (HCCI) combustion by improving the control over the combustion phase as well as reducing the maximum rate of pressure rise. In this work, experiments were carried out on a single-cylinder engine equipped with a dual-fuel-injection system – a port injector for preparing a homogeneous charge and a direct in-cylinder injector for creating the desired fuel stratification. The homogeneous charge was prepared using gasoline fuel while the fuel stratification was created with the in-cylinder injection of either gasoline or methanol during the compression stroke. The test results indicate that high load extension using gasoline for fuel stratification is limited by the trade-off between CO and NOx emissions. Weak gasoline stratification leads to an advanced combustion phase and an increase in NOx emission, while increasing the stratification with a higher quantity of gasoline direct injection, results in a significant deterioration in both the combustion efficiency and the CO emission. Engine tests using methanol for the stratification retarded the ignition timing and prolonged the combustion duration, resulting in a substantial reduction in the maximum rate of pressure rise and the maximum cylinder pressure – a prerequisite for HCCI high load extension. Further tests were then conducted with methanol stratification to extend the HCCI load limit and to optimize the stratified methanol-to-gasoline fuel ratio. Compared to gasoline HCCI, a 50% increase in the maximum IMEP attained was achieved with an acceptable maximum pressure rise rate of 0.5 MPa/°CA while maintaining a high thermal efficiency.  相似文献   

4.
将发动机多维CFD程序KIVA-3V与化学动力学程序CHEMKIN Ⅲ及DETCHEM相耦合,模拟了湍流模型对缸内存在催化燃烧的HCCI发动机燃烧及排放特性的影响.发动机以甲烷为燃料,其表面和空间化学反应采用了详细的动力学机理.分析了两种湍流模型对缸内存在催化燃烧的HCCI发动机着火时刻、缸内温度场及HC、CO、NO浓度场的影响,结果表明当采用RNG k-ε模型时,与采用标准k-ε模型相比,HCCI发动机着火时刻会有所延迟,HC、CO排放有所升高,但Nox的排放将会有大幅降低.  相似文献   

5.
The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120–150 °C) and at different air–fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air–fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NOx emissions are lower than 10 ppm however HC and CO emissions are higher.  相似文献   

6.
MULINBUMP HCCI燃烧控制特性的试验和数值模拟   总被引:3,自引:1,他引:2  
通过试验和数值模拟方法研究了MULINBUMP-HCCI燃烧控制特性.发动机试验表明,通过控制多脉冲喷射参数可以控制预混合气的形成,从而控制燃烧放热速率,获得很低的排放水平.在不采用废气再循环的条件下,NOx排放在低负荷时只有11×10-6,高负荷时也不超过250×10-6,烟度则始终小于0.5 BSU.对多脉冲喷射预混合气形成历程的CFD数值模拟表明,不同的多脉冲喷射定时在混合气形成过程中形成不同的浓度和温度分层,从而引起燃烧特性的变化.通过控制多脉冲喷射参数来控制HCCI燃烧相位和燃烧速率是一种实用、有效的策略.  相似文献   

7.
HCCI combustion has been drawing the considerable attention due to high efficiency and lower nitrogen oxide (NOx) and particulate matter (PM) emissions. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. Massive research throughout the world has led to great progress in the control of HCCI combustion. The first thing paid attention to is that a great deal of fundamental theoretical research has been carried out. First, numerical simulation has become a good observation and a powerful tool to investigate HCCI and to develop control strategies for HCCI because of its greater flexibility and lower cost compared with engine experiments. Five types of models applied to HCCI engine modelling are discussed in the present paper. Second, HCCI can be applied to a variety of fuel types. Combustion phasing and operation range can be controlled by the modification of fuel characteristics. Third, it has been realized that advanced control strategies of fuel/air mixture are more important than simple homogeneous charge in the process of the controlling of HCCI combustion processes. The stratification strategy has the potential to extend the HCCI operation range to higher loads, and low temperature combustion (LTC) diluted by exhaust gas recirculation (EGR) has the potential to extend the operation range to high loads; even to full loads, for diesel engines. Fourth, optical diagnostics has been applied widely to reveal in-cylinder combustion processes. In addition, the key to diesel-fuelled HCCI combustion control is mixture preparation, while EGR is the main path to achieve gasoline-fuelled HCCI combustion. Specific strategies for diesel-fuelled, gasoline-fuelled and other alternative fuelled HCCI combustion are also discussed in the present paper.  相似文献   

8.
二甲基醚均质压燃化学动力学简化模型的研究   总被引:7,自引:0,他引:7  
梁霞  尧命发 《内燃机学报》2005,23(4):329-335
由于详细的化学动力学模型与多维流动动力学模型耦合的高度复杂性,很难将其应用于模拟实际发动机的工作过程。在详细反应动力学研究基础上,通过对二甲基醚(DME)均质压燃燃烧反应途径和敏感性分析,建立了均质压燃二甲基醚的简化动力学模型。此模型在Curran et al模型基础上构建,包括26种产物和28个基元反应。结果表明,提出的二甲基醚简化动力学模型与详细动力学模型计算结果相当吻合,简化模型在对着火时刻、缸内温度和压力计算结果与详细模型基本一致,简化机理对变初始温度和混合气浓度也有较好的预测能力,可应用于模拟二甲基醚HCCI的燃烧过程。  相似文献   

9.
贾明  解茂昭  曾文 《内燃机学报》2007,25(2):105-112
多区模型作为现阶段均质压燃(HCCI)发动机高效准确的数值模型得到了世界范围的广泛关注。讨论了不同子模型对多区模型预测性能的影响。以实验为基准,比较了多区模型中区间划分、缸壁传热模型、区间热量交换模型、区间质量交换模型和边界层模型对HCCI发动机燃烧和排放模拟结果的影响,全部计算均基于异辛烷的详细化学动力学机理。结果表明:在区间划分时对温度较低的区域细化可以提高排放的计算效果,而对高温区域的细化对计算结果影响不大;改进的Woschni传热模型更准确地模拟了缸壁的传热过程;区间的质量和热量交换对计算结果影响显著,特别是质量交换模型的加入使CO排放的预测与实验值更为接近;而边界层厚度模型对整个结果影响不大。  相似文献   

10.
对有废气再循环(EGR)的情况下单一二甲基醚(DME)、DME/甲醇(Methanol)和DME/天然气(CNG)双燃料的均质压燃(HCCI)燃烧进行了实验研究.研究结果表明,单一DME的HCCI只能在小负荷下实现.采用DME/甲醇双燃料后,HCCI的负荷范围达到了原柴油机中高负荷水平.EGR能扩大双燃料HCCI的可控燃烧范围,但对扩展双燃料HCCI燃烧的负荷范围作用不大.分层燃烧技术有扩大双燃料发动机的负荷范围到大负荷的潜力.DME/甲醇双燃料HCCI的指示热效率要优于DME/CNG.在低负荷工况,采用单一DME加EGR的HCCI燃烧能获得更好的经济性指标.  相似文献   

11.
均质压燃发动机燃烧特性的详细反应动力学模拟   总被引:5,自引:0,他引:5  
贾明  解茂昭 《内燃机学报》2004,22(2):122-128
应用CHEMKIN化学动力学软件包中的SENKIN模块模拟了正庚烷在HCCI发动机中的燃烧过程。通过修改SENKIN程序,加入了Woschni传热模型,并在正庚烷详细氧化机理中加入氮氧化物的生成机理,将此程序纳入发动机燃烧的零维单区模型。对多种工况参数下的HCCI燃烧和NOx排放进行了系统的计算,并分别讨论了进气温度、进气压力、压缩比、过量空气系数和转速等参数变化对HCCI发动机燃烧过程的影响。  相似文献   

12.
HCCI (Homogeneous Charge Compression Ignition) has been touted for many years as the alternate technology of choice for future engines, preserving the inherent efficiency of CIDI (Compression Ignition Direct Injection) engines while significantly reducing emissions. The current direction for all published diesel HCCI research is mixture preparation using the direct injection – system, referred to as internal mixture formation. The benefit of internal mixture formation is that it utilizes an already available direct injection system. Direct injected diesel HCCI can be divided into two areas, early injection (early in the compression stroke) and late injection (usually after Top Dead Center (aTDC)). Early direct injection HCCI requires carefully designed fuel injector to minimize the fuel wall-wetting that can cause combustion inefficiency and oil dilution. Late direct injection HCCI requires a long ignition delay and rapid mixing rate to achieve the homogeneous mixture. The ignition delay is extended by retarding the injection timing and rapid mixing rate was achieved by combining high swirl with toroidal combustion-bowl geometry. There is a compromise between Direct Injection (DI) and HCCI combustion regimes. Even under ideal conditions, it can prove difficult to form a truly homogeneous charge, which leads to elevated emissions when compared to true homogenous charge combustion and also strongly contribute to the high sensitivity of the combustion phasing to external parameters. The alternative to the internal mixture formation is, predictably, external mixture formation. By introducing the fuel external to the combustion chamber one can use the turbulence intake process to create a homogeneous charge regardless of engine conditions. This eliminates the need for combustion system changes which were necessary for the internal mixture formation method. With this method, the combustion system remains fully optimized for direct injection and also capable of running in HCCI combustion mode with nearly ideal mixture preparation. The key to the external mixture formation with diesel fuel is proper mixture preparation.  相似文献   

13.
The temporal phases of autoignition and combustion in an HCCI engine have been investigated in both an all-metal engine and a matching optical engine. Gasoline, a primary reference fuel mixture (PRF80), and several representative real-fuel constituents were examined. Only PRF80, which is a two-stage ignition fuel, exhibited a “cool-flame” low-temperature heat-release (LTHR) phase. For all fuels, slow exothermic reactions occurring at intermediate temperatures raised the charge temperature to the hot-ignition point. In addition to the amount of LTHR, differences in this intermediate-temperature heat-release (ITHR) phase affect the fuel ignition quality. Chemiluminescence images of iso-octane show a weak and uniform light emission during this phase. This is followed by the main high-temperature heat-release (HTHR) phase. Finally, a “burnout” phase was observed, with very weak uniform emission and near-zero heat-release rate (HRR). To better understand these combustion phases, chemiluminescence spectroscopy and chemical-kinetic analysis were applied for the single-stage ignition fuel, iso-octane, and the two-stage fuel, PRF80. For both fuels, the spectrum obtained during the ITHR phase was dominated by formaldehyde chemiluminescence. This was similar to the LTHR spectrum of PRF80, but the emission intensity and the temperature were much higher, indicating differences between the ITHR and LTHR phases. Chemical-kinetic modeling clarified the differences and similarities between the LTHR and ITHR phases and the cause of the enhanced ITHR with PRF80. The HTHR spectra for both fuels were dominated by a broad CO continuum with some contribution from bands of HCO, CH, and OH. The modeling showed that the CO+O→CO2+hν reaction responsible for the CO continuum emission tracks the HTHR well, explaining the strong correlation observed experimentally between the total chemiluminescence and HRR during the HTHR phase. It also showed that the CO continuum does not contribute to the ITHR and LTHR chemiluminescence. Bands of H2O and O2 in the red and IR regions were also detected during the HTHR, which the data indicated were most likely due to thermal excitation. The very weak light emission in the “burnout” phase also appeared to be thermal emission from H2O and O2.  相似文献   

14.
在一台进气辅助加热的缸内直喷HCCI汽油机上,根据HCCI小负荷边界工况、燃烧不稳定、燃烧相位循环波动大的特点,制定了基于离子电流信号的燃烧相位闭环控制策略并进行了试验研究.结果表明,离子电流差分最小值相位在稳态工况具有较好的相位稳定性,瞬态工况时与HCCI燃烧相位的相关性最好;通过对首次喷油量的调整,利用离子电流差分最小值相位与HCCI燃烧最大放热率相位之间的相关性制定的控制策略,可以达到控制HCCI燃烧稳定的目的.  相似文献   

15.
以ZS195型直喷式柴油机为原型机,开展了进气道喷射醇醚混合燃料HCCI试验研究。试验研究结果表明,甲醇的添加能够抑制二甲醚(DME)低温反应,降低缸内最大爆发压力和燃烧温度,推后主燃烧反应时刻,解决二甲醚的过快和过早燃烧,可以有效调节HCCI着火时刻和扩展其运行工况。双燃料HCCI发动机的指示热效率最高可以达到49%左右,超过原柴油机10%。通过调节甲醇喷油量,可实现HCCI燃烧着火点可控以及扩展HCCI发动机运行负荷范围。  相似文献   

16.
废气再循环对二甲基醚均质压燃燃烧过程影响的试验研究   总被引:5,自引:1,他引:4  
在一台单缸发动机上进行了废气再循环(EGR)对二甲基醚(DME)均质压燃(HCCI)燃烧过程影响的试验研究。结果表明,EGR比例小于20%对运行最大负荷工况范围影响不大;采用高比例EGR可以拓宽DME均质压燃运行工况范围,随着EGR率增大,HCCI运行的最大负荷工况增大,着火燃烧时刻推迟,燃烧放热率降低,缸内最大爆发压力降低,发动机热效率增大;EGR率小于75%,HC排放略有降低或相当,EGR率为75%时,HC排放显著增加;EGR率大于25%,随着EGR率增加,CO排放增大,小负荷工况尤其明显,在中高负荷工况,EGR率对CO排放影响较小。  相似文献   

17.
在一台经改装的单缸直喷式柴油机上进行了不同辛烷值基础燃料下发动机转速对均质压燃(HCCI)燃烧特性、工况范围和排放特性影响的试验研究。研究结果表明:发动机转速升高,不同辛烷值燃料着火燃烧时刻推迟,以曲轴转角计算的燃烧持续期延长,高辛烷值燃料的缸内最大爆发压力和缸内温度降低;在中间转速,HCCI实现的最高平均指示压力最大,高转速工况,最高平均指示压力降低;对于低辛烷值燃料,转速对燃烧效率影响不大,转速升高,指示热效率增大;对于高辛烷值燃料,转速升高燃烧效率降低,指示热效率在中间转速最高,高转速降低。排放测试表明,转速升高使得HCCI运转的HC和CO排放都升高,NOx排放则逐渐降低。  相似文献   

18.
HCCI甲醇发动机的燃烧与排放特性   总被引:3,自引:0,他引:3  
在Ricardo Hydra单缸四冲程发动机上利用内部废气再循环策略实现了甲醇燃料的HCCI燃烧.通过调整HCCI发动机的过量空气系数和转速,研究了HCCI甲醇发动机的燃烧和排放特性.结果表明,甲醇燃料的HCCI燃烧不同于普通汽油,其着火更早、燃烧更快,但在低转速时,平均指示压力相对较低.甲醇燃料可以在更稀的混合气条件下实现HCCI燃烧.在相同的转速和过量空气系数下,甲醇燃料的NOx和HC排放低于汽油.  相似文献   

19.
We study selected examples of previously published cyclic heat-release measurements from a single-cylinder gasoline engine as stepwise valve timing adjustments were made to shift from spark ignited (SI) combustion to homogeneous charge compression ignition (HCCI). Wavelet analysis of the time series, combined with conventional statistics and multifractal analysis, revealed previously undocumented features in the combustion variability as the shift occurred. In the spark-ignition combustion mode, the heat-release variations were very small in amplitude and exhibited more persistent low-frequency oscillations with intermittent high-frequency bursts. In the HCCI combustion mode, the amplitude of the heat-release variations again was small and involved mainly low-frequency oscillations. At intermediate states between SI and HCCI, a wide range of very large-amplitude oscillations occurred, including both persistent low-frequency periodicities and intermittent high-frequency bursts. It appears from these results that real-time wavelet decomposition of engine cylinder pressure measurements may be useful for on-board tracking of SI–HCCI combustion regime shifts.  相似文献   

20.
在单缸柴油机上进行了冷却废气再循环(EGR)对二甲醚(DME)/甲醇均质压燃(HCCI)燃烧过程影响的试验研究。结果表明,EGR对拓宽二甲醚/甲醇HCCI发动机的最大负荷作用不大;随着EGR率增大,主燃烧开始时刻和放热峰值明显后移,主燃烧持续期延长,放热峰值降低。EGR率为25%时的最大爆发压力比没有EGR时降低了近1.3 MPa,最大爆发压力出现的位置推迟了7°CA;EGR率增大,二甲醚/甲醇HCCI发动机的指示热效率升高。对应给定的EGR率,存在一个热效率较高的DME比例区间;HC和CO排放随EGR率的增大而增加,随DME比例的增加而降低,NOx排放接近于零。控制EGR率和DME比例是控制二甲醚/甲醇HCCI发动机燃烧过程、性能和排放的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号