首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We experimentally investigate the interfacial condensation heat transfer for a steam–water countercurrent stratified flow in a horizontal pipe. In contrast to the previous work of Chu et al. [I.C. Chu, S.O. Yu, M.H. Chun, Interfacial condensation heat transfer for countercurrent steam–water stratified flow in a circular pipe. J. Korean Nucl. Soc. 32 (2) (2000) 142–156] that investigated only the interfacial condensation heat transfer in a stratified smooth flow in a horizontal pipe, this work investigates the steam–water stratified wavy flow. A total of 105 local interfacial condensation heat transfer coefficients for a wavy interface have been obtained. The parametric effects of the flow rates of steam and subcooled water and the degree of subcooling on condensation heat transfer were examined. The empirical Nusselt number correlation was developed on the basis of the bulk flow properties. This correlation agrees with the experimental data within ±32% with a RMS error of 16.2%. Its applicable ranges for a steam–water countercurrent stratified flow in a horizontal pipe are as follows: the ranges of Reynolds numbers are 4000–14 000 for the water and 12 000–23 000 for the steam, and the Jakob numbers for the water are 43.5–180.  相似文献   

2.
Experimental and analytical studies were performed to examine local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The experimental data for pure steam and steam/nitrogen mixture bypass modes were compared to study the effects of noncondensable nitrogen gas on annular film condensation phenomena. The condenser tube had a relatively small inner diameter of 13 mm. The experimental results demonstrated that the local heat transfer coefficients increased as the inlet steam flow rate increased and the inlet nitrogen mass fraction decreased. The results obtained using steam/nitrogen mixtures with a low inlet nitrogen mass fraction were similar to those obtained using pure steam. Therefore, the effects of noncondensable gas on steam condensation were weak in the small-diameter condenser tube because of interfacial shear stress. A new correlation based on dimensionless shear stress and noncondensable gas mass fraction variables was developed to evaluate the condensation heat transfer coefficient inside a vertical tube with noncondensable gas, irrespective of the condenser tube diameter. A theoretical model using a heat and mass transfer analogy and simple models using four empirical correlations were developed and compared with the experimental data obtained under various experimental conditions. The predictions of the theoretical model and the simple model based on a new correlation were in good agreement with the experimental results.  相似文献   

3.
This article presents a study of heat transfer during condensation of n-hexane or isopropanol with a noncondensable gas (nitrogen) in a new plate heat exchanger geometry. Three test sections were installed on the test rig devoted to condensation of mixtures, either in reflux or co-current condensation configurations. For both configurations, heat transfer measurements were carried out. In single-phase flow tests, experimental data reduced by a log mean temperature difference were compared with new correlations on the gas side, adapted to the present specific plate geometry. Correlations of the Fanning friction factor were deduced from gas-side pressure drop measurements on the two geometries tested. In two-phase flow tests, the log mean temperature difference method was assumed to be correct to the first-order for the comparison of results in two test sections. The condensation curve method was applied to the present results, and co-current and reflux condensation configurations were then compared in terms of experimental overall heat transfer coefficients. It is shown that for a gas Reynolds number higher than 2,000, heat transfer coefficients in reflux condensation become higher than those for co-current condensation. Flooding phenomena were observed for specific experimental conditions in reflux condensation mode. The flooding experimental data are compared with five existing correlations (i.e., Wallis, modified Wallis, English et al., McQuillan & Whalley, and Zapke & Kröger) to observe fluid property effects for the same ranges of heat duty and mass flow rates in the condenser. The English et al. and Zapke & Kröger correlations show the best agreement with experimental flooding data in the present geometry.  相似文献   

4.
We carried out a set of experiments on the direct-contact condensation of atmospheric steam for subcooled water flowing co-currently and counter-currently in a circular pipe. The condensation heat transfer coefficient was evaluated both for co-current and counter-current steam–water flow cases in a horizontal circular pipe. In the current experiment the dependency of the liquid Nusselt number on the gas Reynolds number is higher in the counter-current than in the co-current experimental data. The dependency of the liquid Nusselt number on the steam Reynolds number is stronger in the rectangular channel than in the circular pipe. The overall heat transfer characteristics are better in the co-current flow than in the counter-current flow with the same injection flow rates of the steam and the water. The present co-current experimental data were used to assess four existing correlations. However, there are few reliable correlations existing to predict co-current experimental data. The comparisons of the present counter-current experimental data with the existing correlations show that Chu’s (Chu, I.C., Yu, S.O., Chun, M.H. 2000. Interfacial condensation heat transfer for counter-current steam–water stratified flow in a circular pipe, J. Korea Nucl. Soc., 32 (2), 142–156) correlation predicts the experimental data well.  相似文献   

5.
In this paper, an experimental study of the condensation of water vapor from a binary mixture of air and low‐grade steam has been depicted. The study is based upon diffusion heat transfer in the presence of high concentration of noncondensable gas. To simplify the study, experimental analysis is supported by empirical solutions. The experimental setup is custom designed for testing a new shell and tube type heat exchanger supplied by the manufacturer. Air–vapor mixture at 80 °C (max) and 20.2% relative humidity enters the heat exchanger at a mass flow rate of 480 kg/h and condenses 27 kg/h vapor using cooling water at an inlet temperature of 7 °C to 10 °C and mass flow rate of 3500 kg/h. By using the experimental data of constant inlet air mass fraction, mixture gas velocity, and different volumetric flow rate of the cold fluid, the local heat transfer coefficients are obtained. The main objective of this work is to establish an approximate value for surface area and overall heat transfer coefficient of a horizontal shell and tube condenser used in process space. Under designed working conditions, the condenser is found to work efficiently with 90% vapor condensation by mass.  相似文献   

6.
This paper presents experimental results comparing film-wise and drop-wise condensations. The condensing plates were developed to promote film-wise or drop-wise condensation respectively. Rates of heat transfer have been measured on a single face of water-cooled flat plates suspended vertically in a cylindrical test section as steam and mixtures of steam and air flowed over it. In the pure steam cases, the drop-wise condensations showed much higher heat transfer rates than film-wise condensations, which showed good agreements with the Nusselt theory of natural convection condensation. However in the steam and air mixture cases, as expected, both modes of condensations fell in similar range of heat transfer rates. Due to the difference in the condensate flows, the drop-wise condensation showed even lower heat transfer rates than film-wise condensation with the presence of air.  相似文献   

7.
为了研究不可凝气体(non-condensable gases, NCG)对火电与光热发电机组上广泛使用的大扁管空冷凝汽器性能的影响,以工程机组凝汽器上普遍应用的通流面积220 mm×20 mm的大扁管为研究对象,针对汽轮机典型工况下的实际蒸汽流量,基于Lee相变方程、VOF方法以及组分扩散模型,对蒸汽与NCG混合气体管内两相流凝结换热进行数学建模与数值计算。结果表明:由于大扁管的狭窄通流几何结构与高蒸汽流量,NCG对管内蒸汽凝结的抑制效果要远低于预期;当入口空气质量分数按2%增加时,凝结管凝结换热系数仅下降2%左右,这与NCG导致低流量圆管凝结性能急剧下降的结论不同;空气正常泄漏不会导致空冷凝汽器性能下降而影响发电机组效率。  相似文献   

8.
含不凝气体的蒸汽直接接触冷凝在工业中应用广泛,冷凝参数对设备设计至关重要。数值模拟了蒸汽和空气在下流水柱表面的接触冷凝换热;分析了压力对下流水柱表面温度、空气质量分数的影响,以及凝结热流和凝结传热系数的变化规律。结果发现,下流水柱表面温度、凝结热流和凝结传热系数沿着流动方向下降,下流水柱表面空气质量分数沿着流动方向升高。随着压力增加,下流水柱凝结长度增加,在凝结长度末端,下流水柱表面空气质量分数高达90%以上,凝结热流和凝结传热系数均增加。下流水柱初始温度的升高会降低接触凝结传热系数和凝结热流。将计算结果和Celeta等的实验数据做了比较分析。  相似文献   

9.
An experimental study is performed for the steam condensation in a vertical tube where steam is completely condensed. A condenser tube is submerged in a water pool where the heat from the condenser tube is removed through boiling heat transfer. The experiment data showed that the operating pressure is uniquely determined by inlet steam flow rate for the complete condensation. The condensation heat transfer rate increases and the condensation heat transfer coefficient decreases with the system pressure. For the condenser submerged in a saturated water pool, strong primary pressure dependency was observed on the condensation heat transfer.  相似文献   

10.
Reflux condensation is an industrial process that aims to reduce the content of the less volatile component or to eliminate the non-condensable phase of a vapour mixture, by the means of separation. Separation consists in condensing the less volatile phase and to recover the condensate while simultaneously, the non-condensable species are recuperated at the top of the system. Compact plate-fin heat exchangers can be used in gas separation processes. The aim of this study is to test the process of reflux condensation of an air–steam mixture in the channels of a plate fin heat exchanger with a hydraulic diameter of 1.63 mm. The experimental study shows that reflux condensation occurs in specific parts of the heat exchanger, the other parts remaining dry.Moist air condensation is modelled by the film theory and the results show that the model is well adapted to simulating the heat and mass transfer.  相似文献   

11.
考虑空气量影响时蒸汽凝结放热系数的计算方法分析   总被引:5,自引:0,他引:5  
空气量对蒸汽凝结放热系数影响的计算,目前还没有一个人们普遍公认的计算方法。文中首先对空气对轻微流动蒸汽、受迫流动蒸汽以及抽气器运行时蒸汽凝结放热系数影响进行了综述分析,然后对目前常用的几种计算空气量对蒸汽凝结放热系数影响的计算方法进行了计算分析,指出各种计算方法的特点及其存在的问题,为进一步研究空气对蒸汽凝结放热系数的影响奠定了一定的基础。  相似文献   

12.
Heat transfer characteristics of dropwise condensation (DWC) were experimentally studied on a vertical plate for a variety of non-condensable gas (NCG) concentration, saturation pressure, and surface sub-cooling degree. As the heat transfer performance was dominated by the vapor diffusion process near the interface of the gas–liquid within the gas phase, the additional thermal resistance of the coating layer may not be strictly limited, a fluorocarbon coating was applied to promote dropwise condensation mode. Compared with the traditional filmwise condensation (FWC), heat and mass transfer with NCG can be enhanced with the dropwise condensation mode. In the present paper, the effect of condensate liquid resistance should not be regarded as the most vital factor to explain the results, but the vapor diffusion process. This is attributed to the liquid–vapor interfacial perturbation motion caused by coalescence and departure of condensate droplets. The results also demonstrated that the feature of droplets departure is the dominant factor for the steam–air condensation heat transfer enhancement.  相似文献   

13.
An experimental study and a boundary layer analysis were performed for the steam condensation in a vertical tube bundle passive condenser operating in a through flow mode. Four condenser tubes were submerged in a water pool and the heat from the condenser tube was removed through boiling. Experimental data were obtained for various system pressures (100–170 kPa), inlet steam flow rates (15–47 g/s) and non-condensable gas concentration (0–15%). The experimental results showed substantial deterioration in condensation when non-condensable gas was present. With increase in steam flow rate and system pressure the condensate rate increased. The boundary layer thickness and non-condensable gas concentration increased along the condenser tube length.  相似文献   

14.
A programme of condensation experiments was carried out at atmospheric pressure using a water-cooled flat plate varying the air concentrations, the plate inclination and its orientation (upward or downward facing). Rates of heat transfer have been measured on a single face of the condensing plate suspended in a cylindrical test section as steam and mixtures of steam and air flowed over it. The rate of heat transfer decreased as the angle of the plate to the horizontal was reduced and as the concentration of air was increased. A notable observation was that comparison of results for the upward and downward facing cases showed that the heat transfer rates with pure steam are higher for an upward facing plate than for a downward facing one. However, with air present in the steam, this trend is reversed. The effects of plate orientation, mixture flows and buoyancy are discussed.  相似文献   

15.
B. J. Chung  S. Kim 《传热工程》2013,34(11):936-941
Condensation experiments were carried out at atmospheric pressure using water-cooled horizontal and slightly inclined flat plates, varying the air concentrations and the orientations (upward or downward facing). The plate was suspended in a cylindrical test section and exposed to a very slow flow of pure steam or mixtures of steam and air from underneath. For the slightly inclined cases, the test results showed good agreement with the existing studies and reproduced the typical inclined plate phenomena. For the horizontal cases, the downward facing plate showed twice as high heat transfer rates as the upward facing one. The air contained in the steam showed negligible effects for the upward facing plate but a systematic decrease in heat transfer for the downward facing one. The condensation heat transfer beneath the downward facing horizontal plate is influenced by the surface wetting characteristics.  相似文献   

16.
Experimental and theoretical investigations were conducted for the film condensation with noncondensable gas in a vertical tube. Condensation experiments were performed for a steam–air mixture in a vertical tube submerged in a water pool where the heat from the condenser tube was removed through a boiling heat transfer. Degradation of the condensation with noncondensable gas was investigated. A heat and mass analogy model for the annular filmwise condensation with noncondensable gas was developed. In the steam–air mixture region, general momentum, heat and mass transport relations derived by analytic method were used with the consideration of surface suction effect. The predictions from the model were compared with the experimental data and the agreement was satisfactory.  相似文献   

17.
In this paper, an experimental study on the heat transfer characteristics of two-phase flow condensation of alternative azeotropic refrigerant mixtures to R-502, on air/refrigerant horizontal enhanced surface tubing, is presented. The condensation data indicated that the heat transfer coefficient on the blend R-408A has the highest heat transfer rate among the blends under investigation. The condensation data also showed that R-502 and R-407B have similar heat transfer rates when plotted against the refrigerant mass flow rate. It also can be observed that, as the mass flux increases, heat transfer coefficient increases. Correlations were proposed to predict the heat transfer characteristics such as average heat transfer coefficients, as well as pressure drops of alternatives to R-502; such as R507, R404A, R407B and R408A in two-phase flow condensation inside enhanced surface tubing. In addition, proposed correlations were found to fairly predict the two-phase flow heat transfer condensation data.  相似文献   

18.
Careful measurements have been made during condensation of steam from steam–air mixtures flowing in a small, flattened, horizontal tube. The ranges of the relevant variables covered (inlet temperature, pressure, air mole fraction and mixture mass flow rate) were chosen to simulate those occurring in an exhaust heat-exchanger tube of a proposed fuel-cell engine. The experimental tube was cooled by water in laminar counter flow to simulate the external heat-transfer coefficient (air flowing over fins) in the application. The total heat-transfer rate was found from the mass flow rate and temperature rise of the coolant. The tube wall temperature was measured by thermocouples attached in grooves along its length. Special arrangements were made to ensure good mixing of the coolant (in laminar flow) prior to measuring the inlet and outlet temperatures. The condensate was separated using a cyclone at exit from the tube. A simple model was developed to predict local and total heat-transfer and condensation rates and local bulk vapour composition, temperature and pressure along the tube in terms of the inlet parameters and the wall temperature distribution. The measured heat-transfer and condensation rates for the tube were found to be in good agreement with the calculated values without having recourse to empirical adjustment.  相似文献   

19.
Porous ceramic foams are used to achieve high performance in solar heat recovery systems. Understanding the convective heat transfer between the air flow and the ceramic foam is of great importance when optimising the volumetric air receiver. In this work, the convective heat transfer was numerically studied. The present approach was designed to compute the local convective heat transfer coefficient between the air flow and a porous ceramic foam. For that purpose, the energy balance and the flow inside the porous ceramic foam were solved. In addition, a detailed geometry of the porous ceramic foam was considered. The ceramic foams were represented by idealised packed tetrakaidecahedron structures. The numerical simulations were based on the three dimensional Reynolds-averaged Navier–Stokes (RANS) equations. A sensitivity study on the heat transfer coefficient was conducted with the porosity, velocity and mean cell size as parameters. Based on the numerical simulation results, a correlation for the volumetric local convective heat transfer coefficient between air and ceramic foams was developed. The resulting correlation covers a wide range of porosities, velocities, cell sizes and temperatures. The correlation results were compared with experimental data from the literature, and the comparison shows good agreement. The correlation is intended to be used in the design of volumetric solar air receivers.  相似文献   

20.
High-pressure steam flow transients through a pipe with a sparger and a load reduction ring, which is initially occupied by air and water, are analyzed by the method of characteristics (MOC) with consideration of condensation heat transfer. The results of numerical calculation reproduce ABB-Atom's experimental results better than those without consideration of heat transfer. Both the spatial and temporal variations of pressure, flow speed, density and acoustical speed are studied. The locus of interfaces of steam/air and air/water are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号