首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Palestinian Territories relies on Israel for 100% of its fossil fuel imports and for 87% of its electricity imports. Total energy consumption in the Palestinian Territories is the lowest in the region and costs more than anywhere else in the Middle East. The purpose of this paper is to present the current energy situation in the Palestinian Territories, evaluate the potential of renewable energies in meeting part of the energy demand and discuss the challenges and benefits of using these types of energies. It is shown that the main renewable energy sources in the Palestinian Territories are solar, wind and biomass. Using the available renewable energy sources in the Palestinian Territories may significantly decrease the energy reliance on neighboring countries and improve the Palestinian population's access to energy. It is estimated that solar sources have the potential to account for 13% of electricity demand and wind energy for 6.6%. The conversion of animal waste into biogas has the potential to meet the needs of 20% of the rural population. The conversion of unused agricultural residue into biodiesel could replace 5% of the imported diesel.  相似文献   

2.
Solar energy is widely regarded as a major renewable energy source, which in future energy systems will be able to contribute to the security of energy supply and the reduction of CO2 emissions. This study combined an evaluation of solar energy resources in Taiwan with land use analysis, which allows the potentials and restrictions of solar energy exploitation resulting from local land use conditions to be considered. The findings unveiled in this study indicate that photovoltaic electricity generation and solar water heating have the potential of producing 36.1 and 10.2 TWh of electricity and thermal energy annually in Taiwan, accounting for 16.3% and 127.5% of the total domestic consumption of electricity and energy for household water heating in 2009, respectively. However, the exploited solar photovoltaic power generation in 2009 accounted for only 0.02% of total potential in Taiwan, while the exploited solar water heating accounted for 11.6% of total potential. Market price and investment incentive are the dominant factors that affect market acceptance of solar energy installation in Taiwan. The administrative barriers to the purchase and transmission of electricity generated from renewable energy sources have to be removed before the potential contribution of solar energy can be realized.  相似文献   

3.
Despite the abundance of renewable energy resources in the Arab region, the use of solar thermal, solar photovoltaics, and wind is still in its technological and economic infancy. Great potential exists, but economic constraints have impeded more rapid growth for many applications. These technologies have certainly advanced technically over the last quarter century to the point where they should now be considered clean-energy alternatives to fossil fuels. For the Arab countries and many other regions of the world, potable water is becoming as critical a commodity as electricity. As renewable energy technologies advance and environmental concerns rise, these technologies are becoming more interesting partners for powering water desalination projects. We evaluate the current potential and viability of solar and wind, emphasizing the strict mandate for accurate, reliable site-specific resource data. Water desalination can be achieved through either thermal energy (using phase-change processes) or electricity (driving membrane processes), and these sources are best matched to the particular desalination technology. Desalination using solar thermal can be accomplished by multistage flash distillation, multi-effect distillation, vapor compression, freeze separation, and solar still methods. Concentrating solar power offers the best match to large-scale plants that require both high-temperature fluids and electricity. Solar and wind electricity can be effective energy sources for reverse osmosis, electrodialysis, and ultra- and nano-filtration. All these water desalination processes have special operational and high energy requirements that put additional requisites on the use of solar and wind to power these applications. We summarize the characteristics of the various desalination technologies. The effective match of solar thermal, solar photovoltaics, and wind to each of these is discussed in detail. An economic analysis is provided that incorporates energy consumption, water production levels, and environmental benefits in its model. Finally, the expected evolution of the renewable technologies over the near- to mid-term is discussed with the implications for desalination applications over these timeframes.  相似文献   

4.

In this work, renewable energy facilities of Turkey were investigated. Electricity is mainly produced by thermal power plants, consuming coal, lignite, natural gas, fuel oil and geothermal energy, and hydro power plants in Turkey. Turkey has no large oil and gas reserves. The main indigenous energy resources are lignite, hydro and biomass. Turkey has to adopt new, long-term energy strategies to reduce the share of fossil fuels in primary energy consumption. For these reasons, the development and use of renewable energy sources and technologies are increasingly becoming vital for sustainable economic development of Turkey. The most significant developments in renewable production are observed hydropower and geothermal energy production. Renewable electricity facilities mainly include electricity from biomass, hydropower, geothermal, and wind and solar energy sources. Biomass cogeneration is a promising method for production bioelectricity.  相似文献   

5.
Status of geothermal energy amongst the world's energy sources   总被引:1,自引:0,他引:1  
The world primary energy consumption is about 400 EJ/year, mostly provided by fossil fuels (80%). The renewables collectively provide 14% of the primary energy, in the form of traditional biomass (10%), large (>10 MW) hydropower stations (2%), and the “new renewables” (2%). Nuclear energy provides 6%. The World Energy Council expects the world primary energy consumption to have grown by 50–275% in 2050, depending on different scenarios. The renewable energy sources are expected to provide 20–40% of the primary energy in 2050 and 30–80% in 2100. The technical potential of the renewables is estimated at 7600 EJ/year, and thus certainly sufficiently large to meet future world energy requirements. Of the total electricity production from renewables of 2826 TWh in 1998, 92% came from hydropower, 5.5% from biomass, 1.6% from geothermal and 0.6% from wind. Solar electricity contributed 0.05% and tidal 0.02%. The electricity cost is 2–10 US¢/kWh for geothermal and hydro, 5–13 US¢/kWh for wind, 5–15 US¢/kWh for biomass, 25–125 US¢/kWh for solar photovoltaic and 12–18 US¢/kWh for solar thermal electricity. Biomass constitutes 93% of the total direct heat production from renewables, geothermal 5%, and solar heating 2%. Heat production from renewables is commercially competitive with conventional energy sources. Direct heat from biomass costs 1–5 US¢/kWh, geothermal 0.5–5 US¢/kWh, and solar heating 3–20 US¢/kWh.  相似文献   

6.
This work deals with the evaluation of levelized costs of energy and hydrogen of wind farms and concentrated photovoltaic thermal systems. The production of hydrogen is ensured by an alkaline water electrolyser supplied by the electric current generated by the renewable energy sources. The study is carried out on the basis of meteorological data from the Tangier region, in Morocco. Mathematical models are developed to assess the performance and efficiency of renewable sources in terms of energy and hydrogen production for different installed powers. The comparison between the current results and those of previous work shows that the discrepancy did not exceed 6% for both electrical and thermal efficiency of the concentrated photovoltaic/thermal system. The results show that the energy consumption ratios of the electrolyzer are 61 and 64 kWh.kg−1 for wind and solar energy, respectively. Wind and solar hydrogen production efficiencies are also 66 and 62%, respectively. Results show that levelized costs of energy and hydrogen decrease with the increase in installed wind and photovoltaic capacity. The overall results also show that the Tangier region can produce energy and hydrogen at low cost using wind energy compared to concentrated photovoltaic installations. For the hybridization of the two green sources studied, this is highly recommended provided that the capacity of the electrolyzer to be installed is optimal in order to effectively improve the production of hydrogen.  相似文献   

7.
The hydrogen economy is defined as the industrial system in which one of the universal energy carriers is hydrogen (the other is electricity) and hydrogen is oxidized to water that may be reused by applying an external energy source for dissociation of water into its component elements hydrogen and oxygen. There are three different primary energy-supply system classes which may be used to implement the hydrogen economy, namely, fossil fuels (coal, petroleum, natural gas, and as yet largely unused supplies such as shale oil, oil from tar sands, natural gas from geo-pressured locations, etc.), nuclear reactors including fission reactors and breeders or fusion nuclear reactors over the very long term, and renewable energy sources (including hydroelectric power systems, wind-energy systems, ocean thermal energy conversion systems, geothermal resources, and a host of direct solar energy-conversion systems including biomass production, photovoltaic energy conversion, solar thermal systems, etc.). Examination of present costs of hydrogen production by any of these means shows that the hydrogen economy favored by people searching for a non-polluting gaseous or liquid energy carrier will not be developed without new discoveries or innovations. Hydrogen may become an important market entry in a world with most of the electricity generated in nuclear fission or breeder reactors when high-temperature waste heat is used to dissociate water in chemical cycles or new inventions and innovations lead to low-cost hydrogen production by applying as yet uneconomical renewable solar techniques that are suitable for large-scale production such as direct water photolysis with suitably tailored band gaps on semiconductors or low-cost electricity supplies generated on ocean-based platforms using temperature differences in the tropical seas.  相似文献   

8.
Hong Kong is highly vulnerable to energy and economic security due to the heavy dependence on imported fossil fuels. The combustion of fossil fuels also causes serious environmental pollution. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply. Hong Kong has the potential to develop clean renewable hydrogen energy to improve the environmental performance. This paper reviews the recent development of hydrogen production technologies, followed by an overview of the renewable energy sources and a discussion about potential applications for renewable hydrogen production in Hong Kong. The results show that although renewable energy resources cannot entirely satisfy the energy demand in Hong Kong, solar energy, wind power, and biomass are available renewable sources for significant hydrogen production. A system consisting of wind turbines and photovoltaic (PV) panels coupled with electrolyzers is a promising design to produce hydrogen. Biomass, especially organic waste, offers an economical, environmental-friendly way for renewable hydrogen production. The achievable hydrogen energy output would be as much as 40% of the total energy consumption in transportation.  相似文献   

9.
Hydrogen energy can play a pivotal part in enhancing energy security and decreasing hazardous emissions in Pakistan. However, hydrogen energy can be sustainable and clean only if it is produced from renewable energy sources (RES). Therefore, this study conducts feasibility of six RES for the generation of hydrogen in Pakistan. RES evaluated in this study include wind, solar, biomass, municipal solid waste (MSW), geothermal, and micro-hydro. RES have been evaluated using Fuzzy Delphi, fuzzy analytical hierarchy process (FAHP), and environmental data envelopment analysis (DEA). Fuzzy Delphi finalizes criteria and sub-criteria. FAHP obtains relative weights of criteria considered for choosing the optimal RES. Environmental DEA measures relative efficiency of each RES using criteria weights as outputs, and RES-based electricity generation cost as input. The results revealed wind as the most efficient source of hydrogen production in Pakistan. Micro-hydro and Solar energy can also be used for hydrogen production. Biomass, MSW, and geothermal achieved less efficiency scores and therefore are not suggested at present.  相似文献   

10.
In recent years, Denmark boosted investments in renewable energy and electrification of transportation. The Danish Agenda proposed that all primary energy consumption will be covered by renewable sources such as wind, biomass and solar by 2050. These changes require significant investment and re-thinking of entire energy infrastructures and types of consumption. The Agenda also suggested, among other things, improving the efficiency of energy systems.In this paper, the interactions between charging an electric car and an innovative cogeneration system for household application (micro-solid oxide fuel cell with an integrated heating system) are investigated. The charge of the electric car by the cogenerator produces waste heat that can be used to partially cover the heat demand of the house. In this way it may be possible to increase overall efficiency and decrease total energy costs. Different innovative strategies are proposed and analyzed to manage charging an electric car and efficiently using the waste heat available. The aims of this study are to make the system grid-independent, to decrease the thermal stress of SOFCs and to determine the nominal power of an integrated heating system. The results show energy efficiency and economic profitability of the system, even if subsidies are not included.  相似文献   

11.
The potential of biogas generation from anaerobic digestion of different waste biomass in India has been studied. Renewable energy from biomass is one of the most efficient and effective options among the various other alternative sources of energy currently available. The anaerobic digestion of biomass requires less capital investment and per unit production cost as compared to other renewable energy sources such as hydro, solar and wind. Further, renewable energy from biomass is available as a domestic resource in the rural areas, which is not subject to world price fluctuations or the supply uncertainties as of imported and conventional fuels. In India, energy demand from various sectors is increased substantially and the energy supply is not in pace with the demand which resulted in a deficit of 11,436 MW which is equivalent to 12.6% of peak demand in 2006. The total installed capacity of bioenergy generation till 2007 from solid biomass and waste to energy is about 1227 MW against a potential of 25,700 MW. The bioenergy potential from municipal solid waste, crop residue and agricultural waste, wastewater sludge, animal manure, industrial waste which includes distilleries, dairy plants, pulp and paper, poultry, slaughter houses, sugar industries is estimated. The total potential of biogas from all the above sources excluding wastewater has been estimated to be 40,734 Mm3/year.  相似文献   

12.
邓秋佳  杨昭  张雷 《太阳能学报》2022,43(8):484-489
针对太阳能光伏发电技术、需求侧管理(DSM)技术和储能技术提出一种新型太阳能冷库系统。探讨利用冷能储存和光伏发电来减少和转移峰值电力需求、降低电力消耗成本的潜力。建立系统的仿真模型并通过实验进一步修正,结果表明系统在5—8月份基本可节约60%以上的电费,能源节约率最高可达48.38%,相应的电费支付最高可节省65.40%。  相似文献   

13.
Present electricity grids are predominantly thermal (coal, gas) and hydro based. Conventional power planning involves hydro-thermal scheduling and merit order dispatch. In the future, modern renewables (hydro, solar and biomass) are likely to have a significant share in the power sector. This paper presents a method to analyse the impacts of renewables in the electricity grid. A load duration curve based approach has been developed. Renewable energy sources have been treated as negative loads to obtain a modified load duration curve from which capacity savings in terms of base and peak load generation can be computed. The methodology is illustrated for solar, wind and biomass power for Tamil Nadu (a state in India). The trade-offs and interaction between renewable sources are analysed. The impacts on capacity savings by varying the wind regime have also been shown. Scenarios for 2021–22 have been constructed to illustrate the methodology proposed. This technique can be useful for power planners for an analysis of renewables in future electricity grids.  相似文献   

14.
Energy consumption has risen in Malaysia because of developing strategies and increasing rate of population. Depletion of fossil fuel resources, fluctuation in the crude oil prices, and emersion of new environmental problems due to greenhouse gasses effects of fossil fuel combustion have convinced governments to invest in development of power generation based on renewable and sustainable energy (RSE) resources. Recently, power generation from RSE resources has been taken into account in the energy mix of every country to supply the annual electricity demand. In this paper, the scenario of the energy mix of Malaysia and the role of RSE resources in power generation are studied. Major RSE sources, namely biomass and biogas, hydro‐electricity, solar energy, and wind energy, are discussed, focusing more toward the electrical energy demand for electrification. It is found that power generation based on biomass and biogas utilization, solar power generation, and hydropower has enough spaces for more development in Malaysia. Moreover, minihydropower and wind power generation could be effective for rural regions of Malaysia. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The volatility of fossil fuel and their increased consumption have exacerbated the socio-economic dilemma along with electricity expenses in third world countries around the world, Pakistan in particular. In this research, we study the output of renewable hydrogen from natural sources like wind, solar, biomass, and geothermal power. It also provides rules and procedures in an attempt to determine the current situation of Pakistan regarding the workability of upcoming renewable energy plans. To achieve this, four main criteria were assessed and they are economic, commercial, environmental, and social adoption. The method used in this research is the Fuzzy Analytical Hierarchical Process (FAHP), where we used first-order engineering equations, and Levelized cost electricity to produce renewable hydrogen. The value of renewable hydrogen is also evaluated. The results of the study indicate that wind is the best option in Pakistan for manufacturing renewable based on four criteria. Biomass is found to be the most viable raw material for the establishment of the hydrogen supply network in Pakistan, which can generate 6.6 million tons of hydrogen per year, next is photovoltaic solar energy, which has the capability of generating 2.8 million tons. Another significant finding is that solar energy is the second-best candidate for hydrogen production taking into consideration its low-cost installation and production. The study shows that the cost of using hydrogen in Pakistan ranges from $5.30/kg to $5.80/kg, making it a competitive fuel for electric machines. Such projects for producing renewable power must be highlighted and carried out in Pakistan and this will lead to more energy security for Pakistan, less use of fossil fuels, and effective reduction of greenhouse gas emissions.  相似文献   

16.
This paper details the state of renewable energy development in Tanzania and biomass energy supply and consumption. It also highlights the various levels of renewable energy programmes in the country and the Government strategy to improve renewable energy production and utilization technologies. A number of problems hindering the development of renewable energy technologies have been identified and discussed. Biomass accounts for 92% of final energy consumption in Tanzania and will continue to dominate the national energy balance. For example, fuelwood and agricultural residues used to meet domestic energy needs account for 80% of the domestic energy requirements, while commercial energy such as kerosene, electricity and liquefied petroleum gas account for 1%. Total biomass resources for 1990 was 27 million tonnes of oil equivalent (TOE) from the natural forests. Other major industrial biomass energy sources include sawmill industry, sugarcane plantations, sugar industry by-products, cashew nut industry, coffee industry and sisal industry. The major biomass consumers include woodfuel for domestic use, tobacco production, brick making, tea drying and fish smoking. While there are efforts to develop other renewable sources of energy such as solar, wind and minihydros, there are also problems hindering their development. They include the lack of adequate data on the actual energy potential of these sources as well as the lack of local capability to design and manufacture energy related equipment and spare parts.  相似文献   

17.
We examine the changes to the electric power system required to incorporate high penetration of variable wind and solar electricity generation in a transmission constrained grid. Simulations were performed in the Texas, US (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power meet up to 80% of the electric demand. The primary constraints on incorporation of these sources at large scale are the limited time coincidence of the resource with normal electricity demand, combined with the limited flexibility of thermal generators to reduce output. An additional constraint in the ERCOT system is the current inability to exchange power with neighboring grids.  相似文献   

18.
太阳能作为一种可再生的新能源,越来越引起人们的关注。我国每年太阳能资源理论储量折合标准煤达17000亿t,而包括风能、水能、生物质能、地热能在内的其它所有可再生能源折合标准煤不到60亿t,太阳能利用潜力巨大。太阳能发电主要有光伏发电和光热发电。太阳能光热发电比光伏发电具有更多的优势。阐述了太阳能光热发电的国内外发展现状,分析了河北省太阳能的资源潜力,并提出了河北省发展太阳能光热发电的建议和对策.  相似文献   

19.
In Turkey, there is a much more potential for renewables, but represent about 37% of total energy production and 10% of total energy consumption. This share is not enough for the country and the governments should be increase to this situation. Renewable energy technologies of wind, biomass, hydropower, geothermal, solar thermal and photovoltaics are finally showing maturity and the ultimate promise of cost competitiveness. With respect to global environmental issues, Turkey's carbon dioxide emissions have grown along with its energy consumption. States have played a leading role in protecting the environment by reducing emissions of greenhouse gases. In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Certain policy interventions could have a dramatic impact on shaping the relationship between geological, geographic and climatic conditions and energy production. This study shows that there is enough renewable energy potential in Turkey for fuels and electricity. Especially hydropower and biomass are very well.  相似文献   

20.
In Lithuania, the generation of electricity is based on the nuclear energy and on the fossil fuels. After the decommissioning of Ignalina nuclear power plant in 2009, the Lithuanian Power Plant and other thermal plants will become the major sources of electricity. Consequently, the Lithuanian power sector must focus on the implementation of renewable energy projects, penetration of new technologies and on consideration of the future opportunities for renewables, and Government policy for promoting this kind of energy. Production of electricity from renewable energy is based on hydro, biomass and wind energy resources in Lithuania. Due to the typical climatic condition in Lithuania the solar photovoltaics and geothermal energy are not used for power sector. Moreover, the further development of hydropower plants is limited by environmental restrictions, therefore priority is given to wind energy development and installation of new biomass power plants. According to the requirements set out in the Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market [Official Journal L283, 33–40, 27 October 2001], 7% of gross consumption of electricity will be generated from renewable energy by 2010 in Lithuania. The aim of this paper is to show the estimation of the maximum renewable power penetration in the Lithuanian electricity sector and possible environmental impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号