首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, the hydrogen storage properties of MgH2-X wt.% FeCl3 (X = 5, 10, 15 and 20) are investigated experimentally. It is found that the MgH2 + 10 wt.% FeCl3 sample exhibits the best comprehensive hydrogen storage properties, in terms of the onset dehydrogenation temperature, the hydrogen amounts de/reabsorbed as well as the relative de/rehydrogenation rates. The onset dehydrogenation temperature of the 10 wt.% FeCl3-doped MgH2 sample is reduced by about 90 °C compared to the as-milled MgH2, and the sorption kinetics measurements indicate that the FeCl3-doped sample displays an average dehydrogenation rate 5–6 times faster than that of the undoped MgH2 sample. Higher levels of doping introduce negative effects, such as lower capacity and slower absorption/desorption rates compared to samples with lower FeCl3 doping levels. The apparent activation energy for hydrogen desorption is decreased from 166 kJ•mol−1 for as-milled MgH2 to 130 kJ•mol−1 by the addition of 10 wt.% FeCl3. It is believed that the improvement of the MgH2 sorption properties in the MgH2/FeCl3 composite is due to the catalytic effects of the in-situ generated Fe species and MgCl2 that are formed during the heating process.  相似文献   

2.
In this study, the hydrogen storage properties of MgH2 with the addition of K2TiF6 were investigated for the first time. The temperature-programmed desorption results showed that the addition of 10 wt% K2TiF6 to the MgH2 exhibited a lower onset desorption temperature of 245 °C, which was a decrease of about 105 °C and 205 °C compared with the as-milled and as-received MgH2, respectively. The dehydrogenation and rehydrogenation kinetics of 10 wt% K2TiF6-doped MgH2 were also significantly improved compared to the un-doped MgH2. The results of the Arrhenius plot showed that the activation energy for the hydrogen desorption of MgH2 was reduced from 164 kJ/mol to 132 kJ/mol after the addition of 10 wt% K2TiF6. Meanwhile, the X-ray diffraction analysis showed the formation of a new phase of potassium hydride and titanium hydride together with magnesium fluoride and titanium in the doped MgH2 after the dehydrogenation and rehydrogenation process. It is reasonable to conclude that the K2TiF6 additive doped with MgH2 played a catalytic role through the formation of active species of KH, TiH2, MgF2 and Ti during the ball milling or heating process. It is therefore proposed that this newly developed product works as a real catalyst for improving the hydrogen sorption properties of MgH2.  相似文献   

3.
The catalytic effects of K2NbF7 on the hydrogen storage properties of MgH2 have been studied for the first time. MgH2 + 5 wt% K2NbF7 has reduced the onset dehydrogenation temperature to 255 °C, which is 75 °C lower than the as-milled MgH2. For the rehydrogenation kinetic, at 150 °C, MgH2 + 5 wt% K2NbF7 absorbs 4.7 wt% of hydrogen in 30 min whereas the as-milled MgH2 only absorbs 0.7 wt% of hydrogen under similar condition. For the dehydrogenation kinetic, at 320 °C, the MgH2 + 5 wt% K2NbF7 is able to release 5.2 wt% of hydrogen in 5.6 min as compared to 0.3 wt% by the as-milled MgH2 under similar condition. Comparatively, the Ea value of MgH2 + 5 wt% K2NbF7 is 96.3 kJ/mol, which is 39 kJ/mol lower compared to the as-milled MgH2. The MgF2, the KH and the Nb that are found after the heating process are believed to be the active species that have improved the system properties. It is concluded that the K2NbF7 is a good catalyst to improve the hydrogen storage properties of MgH2.  相似文献   

4.
The catalytic effect of MoS2 and MoO2 on the hydrogen absorption/desorption kinetics of MgH2 has been investigated. It is shown that MoS2 has a superior catalytic effect over MoO2 on improving the hydrogen kinetic properties of MgH2. DTA results indicated that the desorption temperature decreased from 662.10 K of the pure MgH2 to 650.07 K of the MgH2 with MoO2 and 640.34 K of that with MoS2. Based on the Kissinger plot, the activation energy of the hydrogen desorption process is estimated to be 101.34 ± 4.32 kJ mol−1 of the MgH2 with MoO2 and 87.19 ± 4.48 kJ mol−1 of that with MoS2, indicating that the dehydriding process energy barrier of MgH2 can be reduced. The enhancement of the hydriding/dehydriding kinetics of MgH2 is attributed to the presence of MgS and Mo or MgO and Mo which catalyze the hydrogen absorption/desorption behavior of MgH2. The detailed comparisons between MoS2 and MoO2 suggest that S anion has superior properties than O anion on catalyzing the hydriding/dehydriding kinetics of MgH2.  相似文献   

5.
2LiBH4/MgH2 system is a representative and promising reactive hydride composite for hydrogen storage. However, the high desorption temperature and sluggish desorption kinetics hamper its practical application. In our present report, we successfully introduce CoNiB nanoparticles as catalysts to improve the dehydrogenation performances of the 2LiBH4/MgH2 composite. The sample with CoNiB additives shows a significant desorption property. Temperature programmed desorption (TPD) measurement demonstrates that the peak decomposition temperatures of MgH2 and LiBH4 are lowered to be 315 °C and 417 °C for the CoNiB-doped 2LiBH4/MgH2. Isothermal dehydrogenation analysis demonstrates that approximately 10.2 wt% hydrogen can be released within 360 min at 400 °C. In addition, this study gives a preliminary evidence for understanding the CoNiB catalytic mechanism of 2LiBH4/MgH2  相似文献   

6.
In this study, we report the hydrogen absorption/desorption properties and reaction mechanism of the MgH2-NaAlH4 (4:1) composite system. This composite system showed improved dehydrogenation performance compared with that of as-milled NaAlH4 and MgH2 alone. The dehydrogenation process in the MgH2-NaAlH4 composite can be divided into four stages: NaAlH4 is first reacted with MgH2 to form a perovskite-type hydride, NaMgH3 and Al. In the second dehydrogenation stage, the Al phase reacts with MgH2 to form Mg17Al12 phase accompanied with the self-decomposition of the excessive MgH2. NaMgH3 goes on to decompose to NaH during the third dehydrogenation stage, and the last stage is the decomposition of NaH. Kissinger analysis indicated that the apparent activation energy, EA, for the MgH2-relevent decomposition in MgH2-NaAlH4 composite was 148 kJ/mol, which is 20 kJ/mol less than for as-milled MgH2 (168 kJ/mol). X-ray diffraction patterns indicate that the second, third, and fourth stages are fully reversible. It is believed that the formation of Al12Mg17 phase during the dehydrogenation process alters the reaction pathway of the MgH2-NaAlH4 (4:1) composite system and improves its thermodynamic properties.  相似文献   

7.
This paper reports the catalytic effects of mischmetal (Mm) and mischmetal oxide (Mm-oxide) on improving the dehydrogenation and rehydrogenation behaviour of magnesium hydride (MgH2). It has been found that 5 wt.% is the optimum catalyst (Mm/Mm-oxide) concentration for MgH2. The Mm and Mm-oxide catalyzed MgH2 exhibits hydrogen desorption at significantly lower temperature and also fast rehydrogenation kinetics compared to ball-milled MgH2 under identical conditions of temperature and pressure. The onset desorption temperature for MgH2 catalyzed with Mm and Mm-oxide are 323 °C and 305 °C, respectively. Whereas the onset desorption temperature for the ball-milled MgH2 is 381 °C. Thus, there is a lowering of onset desorption temperature by 58 °C for Mm and by 76 °C for Mm-oxide. The dehydrogenation activation energy of Mm-oxide catalyzed MgH2 is 66 kJ/mol. It is 35 kJ/mol lower than ball-milled MgH2. Additionally, the Mm-oxide catalyzed dehydrogenated Mg exhibits faster rehydrogenation kinetics. It has been noticed that in the first 10 min, the Mm-oxide catalyzed Mg (dehydrogenated MgH2) has absorbed up to 4.75 wt.% H2 at 315 °C under 15 atmosphere hydrogen pressure. The activation energy determined for the rehydrogenation of Mm-oxide catalyzed Mg is ∼62 kJ/mol, whereas that for the ball-milled Mg alone is ∼91 kJ/mol. Thus, there is a decrease in absorption activation energy by ∼29 kJ/mol for the Mm-oxide catalyzed Mg. In addition, Mm-oxide is the native mixture of CeO2 and La2O3 which makes the duo a better catalyst than CeO2, which is known to be an effective catalyst for MgH2. This takes place due to the synergistic effect of CeO2 and La2O3. It can thus be said that Mm-oxide is an effective catalyst for improving the hydrogen sorption behaviour of MgH2.  相似文献   

8.
MgH2-Li3AlH6 mixture shows a mutual activation effect between the components. But the dehydrogenation kinetics is still slow, especially at temperature as low as 250 °C. Hereby, an additive (TiF3) was introduced into the mixture in the present study. The reaction mechanisms were studied by the combined analyses of X-ray diffraction (XRD), thermogravimetric analysis (TGA), as well as thermodynamic calculations. A two-step ball milling method could reduce the mechanical decomposition of Li3AlH6 effectively and was adopted. During milling, Li3AlH6 reacts with TiF3 and produces Al3Ti while MgH2 remains stable. All the species are well mixed after milling and the grain size is as small as 100 nm. During TGA test, all the reactions occur at lower temperatures compared with undoped mixture, especially the dehydrogenation of MgH2, which shows a decrease of 60 °C. Its activation energy is reduced by 32.0 kJ mol−1. The first three isothermal (250 °C) cycles indicate that the kinetics of dehydrogenation has been greatly enhanced, showing a reversible capacity of 4.5 wt.% H2. The time needed for the 1st dehydrogenation has been shortened to 3600 s from 8000 s for the undoped mixture. These improvements are mainly attributed to the catalytic effect of the in-situ formed Al3Ti. But there is no influence on the rehydrogenation kinetics and the enthalpy of the dehydrogenation of MgH2 is unchanged.  相似文献   

9.
The influences of Nb-containing oxides and ternary compound in hydrogen sorption performance were investigated. As faster desorption kinetic and lower activation energy were reported by addition of a ternary compound catalyst such as K2NiF6, the influence of KNbO3 on hydrogen storage properties of MgH2 has been investigated for the first time. The MgH2 - KNbO3 composite desorbed 3.9 wt% of hydrogen within 10 min, while MgH2 and MgH2-Nb₂O₅ composites desorbed 0.66 wt% and 3.2 wt% respectively under similar condition. For MgH2 with other Nb-contained catalysts such as Nb, NbO and Nb₂O3, the desorption rate was almost the same as the one registered for as-milled MgH2. The analysis of differential scanning calorimetry (DSC) showed that MgH2-KNbO3 composite started to release hydrogen at ∼335 °C which is 50 °C lower compared to as-milled MgH2 without any additives. The activation energy for the hydrogen desorption was estimated to be about 104 ± 6.8 kJ mol−1 for this material, while for the as-milled MgH2 was about 165 ± 2.0 kJ mol−1. It is believed that Nb-ternary oxide catalyst (KNbO3) showed a good catalytic effect and enhance the sorption kinetics of MgH2.  相似文献   

10.
In the present study, the catalytic effect of Ni and ZrO2 nanoparticles on the hydrogen absorption and desorption properties of MgH2 has been investigated. The MgH2 nanocomposites were prepared by high-energy ball-milling. The morphology, phase structure, thermal behavior, and hydrogen storage properties of the materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), temperature-programmed desorption (TPD), differential scanning calorimetry (DSC), and the pressure-composition temperature (PCT) methods. ZrO2 and Ni nanoparticles were homogenously dispersed into the MgH2 matrix. The calculated apparent activation energy for dehydrogenation was 63.4 kJ/mol, which was decreased by 80.1 kJ/mol compared to that of as-milled MgH2. As a result, MgH2+5 wt.%Ni+5 wt.%ZrO2 demonstrated improved dehydrogenation and hydrogenation kinetics at 310 °C. The MgH2+5 wt.%Ni+5 wt.%ZrO2 sample released about 6.83 wt.% and absorbed about 6.10 wt.% in less than 30 min. Therefore, the co-catalysis of Ni and ZrO2 significantly enhances the hydrogenation and dehydrogenation properties of MgH2.  相似文献   

11.
The effect of transition metal fluorides on the dehydrogenation and hydrogenation of MgH2 has been investigated. Many of the fluorides show a considerable catalytic effect on both the dehydrogenation temperature and hydrogenation kinetics of MgH2. Among them, NbF5 and TiF3 most significantly enhance the hydrogenation kinetics of MgH2. It is suggested that hydride phases formed by the reaction between MgH2 and these transition metal fluorides during milling and/or hydrogenation play a key role in improving the hydrogenation kinetics of MgH2.  相似文献   

12.
The hydrogen desorption properties of MgH2–LiAlH4 composites obtained by mechanical milling for different milling times have been investigated by Thermal Desorption Spectroscopy (TDS) and correlated to the sample microstructure and morphology analysed by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The MgH2–LiAlH4 composites show improved hydrogen desorption properties in comparison with both as-received and ball-milled MgH2. Mixing of MgH2 with small amount of LiAlH4 (5 wt.%) using short mechanical milling (15 min) shifts, in fact, the hydrogen desorption peak to lower temperature than those observed with both as-received and milled MgH2 samples. Longer mixing times of the MgH2–LiAlH4 composites (30 and 60 min) reduce the catalytic activity of the LiAlH4 additive as revealed by the shift of the hydrogen desorption peak to higher temperatures.  相似文献   

13.
The desorption mechanism of as-milled 2NaBH4 + MgH2 was investigated by volumetric analysis, X-ray diffraction and electron microscopy. Hydrogen desorption was carried out in 0.1 bar hydrogen pressure from room temperature up to 450 °C at a heating rate of 3 °C min−1. Complete dehydrogenation was achieved in two steps releasing 7.84 wt.% hydrogen. Desorption reaction in this system is kinetically restricted and limited by the growth of MgB2 at the Mg/Na2B12H12 interface where the intermediate product phases form a barrier to diffusion. During desorption, MgB2 particles are observed to grow as plates around NaH particles.  相似文献   

14.
In this study, we used a combination of graphene oxide-based porous carbon (GC) and titanium chloride (TiCl3) to improve the reversible dehydrogenation properties of magnesium hydride (MgH2). Examining the effects of GC and TiCl3 on the hydrogen storage properties of MgH2, the study found GC was a useful additive as confinement medium for promoting the reversible dehydrogenation of MgH2. And TiCl3 was an efficient catalytic dopant. A series of controlled experiments were carried out to optimize the sample preparation method and the addition amount of GC and TiCl3. In comparison with the neat MgH2 system, the MgH2/GC-TiCl3 composite prepared under optimized conditions exhibited enhanced dehydrogenation kinetics and lower dehydrogenation temperature. A combination of phase/microstructure/chemical state analyses has been conducted to gain insight into the promoting effects of GC and TiCl3 on the reversible dehydrogenation of MgH2. Our study found that GC was a useful scaffold material for tailoring the nanophase structure of MgH2. And TiCl3 played an efficient catalytic effect. Therefore, the remarkably improved dehydrogenation properties of MgH2 should be attributed to the synergetic effects of nanoconfinement and catalysis.  相似文献   

15.
In the present work we investigate the hydrogen sorption properties of composites in the MgH2–Ni, MgH2–Ni–LiH and MgH2–Ni–LiBH4 systems and analyze why Ni addition improve hydrogen sorption rates while LiBH4 enhance the hydrogen storage capacity. Although all composites with Ni addition showed significantly improved hydrogen storage kinetics compared with the pure MgH2, the fastest hydrogen sorption kinetics is obtained for Ni-doped MgH2. The formation of Mg2Ni/Mg2NiH4 in Ni-doped MgH2 composite and its microstructure allows to uptake 5.0 wt% of hydrogen in 25 s and to release it in 8 min at 275 °C. In the MgH2–Ni–LiBH4 composite, decomposition of LiBH4 occurs during the first dehydriding leading to the formation of diborane, which has a Ni catalyst poison effect via the formation of a passivating boron layer. A combination of FTIR, XRD and volumetric measurements demonstrate that the formation of MgNi3B2 in the MgH2–Ni–LiBH4 composite happens in the subsequent hydriding cycle from the reaction between Mg2Ni/Mg2NiH4 and B. Activation energy analysis demonstrates that the presence of Ni particles has a catalytic effect in MgH2–Ni and MgH2–Ni–LiH systems, but it is practically nullified by the addition of LiBH4. The beneficial role of LiBH4 on the hydrogen storage capacity of the MgH2–Ni–LiBH4 composite is discussed.  相似文献   

16.
Reactive Hydride Composites (RHCs), ball-milled composites of two or more different hydrides, are suggested as an alternative for solid state hydrogen storage. In this work, dehydrogenation of 2NaBH4 + MgH2 system under vacuum was investigated using complementary characterization techniques. At first, thermal programmed desorption of as-milled composite and single compounds was used to identify the temperature range of hydrogen release. RHC samples annealed at various temperatures up to 500 °C were characterized by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. It was found that the dehydrogenation reaction under vacuum is likely to proceed as follows: 2NaBH4 + MgH2 (>250 °C) → 2NaBH4 + 1/2MgH2 + 1/2Mg + 1/2H2 (>350 °C) ↔ 3/2NaBH4 + 1/4MgB2 + 1/2NaH + 3/4Mg + 7/4H2 (>450 °C) → 2Na + B + 1/2Mg + 1/2MgB2 + 5H2. In addition, presence of NaMgH3 phase suggests the occurrence of secondary reactions.  相似文献   

17.
Different destabilized LiBH4 systems with several interacting components are being explored for hydrogen storage applications. In this study, hydrogen sorption properties of as-milled 6LiBH4-MCl3 composites (M = Ce, Gd) are investigated by X-ray diffraction, differential scanning calorimetry and thermovolumetric measurements. The chemical interaction between metal halides and LiBH4 decreases the dehydrogenation temperature in comparison with as-milled LiBH4. Hydrogen release starts at 220 °C from the decomposition of M(BH4)3 formed during milling and proceeds through destabilization of LiBH4 by in-situ formed MH2. The dehydrogenation products CeB6-LiH and GdB4-LiH can be rehydrided under moderate conditions, i.e 400 °C and 6.0 MPa of hydrogen pressure for 2 h without catalyst. A new 6LiBH4-CeCl3-3LiH composite shows promissory hydrogen storage properties via the formation by milling of CeH2+x. Our study is the first work about reversible hydrogen storage in LiBH4-MCl3 composites destabilized by in-situ formed MH2.  相似文献   

18.
In this paper, we report a novel method of improving the reversible dehydrogenation properties of the 2LiBH4–MgH2 composite. Our study found that mechanically milling with small amount of Al powder can markedly shorten or even eliminate the problematic incubation period that interrupts the dehydrogenation steps of the 2LiBH4–MgH2 composite. But the resulting composite showed serious kinetics degradation upon cycling. In an effort to solve this problem, we found that combined usage of small amounts of Al and MgO enabled the 2LiBH4–MgH2 composite to rapidly and reversibly deliver around 9 wt% hydrogen at 400 °C under 0.3 MPa H2, which compares favorably with the dehydrogenation performance of the composites with transition-metal additives. A combination of phase/microstructural analyses and series of control experiments has been conducted to gain insight into the promoting effects of Al and MgO. It was found that Al and MgO additives act as precursor and promoter for the formation of AlB2 heterogeneous nucleation sites, respectively.  相似文献   

19.
Nanostructured MgH2-Ni/Nb2O5 nanocomposite was synthesized by high-energy mechanical alloying. The effect of MgH2 structure, i.e. crystallite size and lattice strain, and the presence of 0.5 mol% Ni and Nb2O5 on the hydrogen-desorption kinetics was investigated. It is shown that the dehydrogenation temperature of MgH2 decreases from 426 °C to 327 °C after 4 h mechanical alloying. Here, the average crystallite size and accumulated lattice strain are 20 nm and 0.9%, respectively. Further improvement in the hydrogen desorption is attained in the presence of Ni and Nb2O5, i.e. the dehydrogenation temperature of MgH2/Ni and MgH2/Nb2O5 is measured to be 230 °C and 220 °C, respectively. Meanwhile, the dehydrogenation starts at 200 °C in MgH2–Ni/Nb2O5 system, revealing synergetic effect of Ni and Nb2O5. The mechanism of the catalytic effect is presented.  相似文献   

20.
In this study, we synthesized ZrO2 nanorods through a hydrothermal process as a catalyst precursor for the reversible hydrogen storage reaction between 2LiH + MgB2 and 2LiBH4 + MgH2. The 2LiH + MgB2 composites doped with the ZrO2 nanorods demonstrated superior and stable hydriding/dehydriding kinetics upon cycling. The XRD, SEM and HRTEM results revealed that the doped ZrO2 nanorods were transformed into ZrB2 nanoparticles with a size of a few nanometers during the first hydrogenation. The initial nanosize of the ZrO2 catalyst precursor accounted for the formation of extremely fine ZrB2 nanoparticles, which acted as heterogeneous nuclei of MgB2. The present study provides a new route for performance enhancement of complex hydride composites through manipulating the nanostructure of catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号