首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 378 毫秒
1.
韩雪梅  谈金祝  刘永昌 《太阳能学报》2016,37(11):2978-2982
考虑质子交换膜(PEM)燃料电池组装力和工作温度耦合作用对燃料电池双极板与气体扩散层(GDL)间接触压力和电化学性能的影响,采用有限元分析(finite element analysis,FEA)与实验相结合的方法对其进行研究。结果表明,组装力和温度对气体扩散层和双极板之间的接触压力有明显的影响。同时采用实验的方法研究组装力和温度对燃料电池电化学性能的影响,结果表明,当组装力为3.0 Nm和燃料电池温度为80℃时,燃料电池接触压力分布最均匀,电化学性能最优。实验结果与模拟结果吻合较好。  相似文献   

2.
自然环境下湿分分层土壤中热湿迁移规律的研究   总被引:2,自引:0,他引:2  
建立描述存在干饱和层时的土壤热湿传递的数学模型并进行数值模拟,获得自然环境下土壤中温度、湿分分布以及水分蒸发的动态特性,分析干饱和土壤层对土壤热湿迁移及水分蒸发的影响。数值模拟获得实验支持。  相似文献   

3.
二元固液相变过程的三维非稳态数值研究   总被引:5,自引:1,他引:4  
对二元固液相变进行了传统热理论分析。建立了相变换热及两相流动过程的物理模型和数学模型,并进行了相应的数值求解。由模拟结果可见不同组分在固相和液相中的百分含量以及整场的温度、速度和压力分布等。  相似文献   

4.
李秋英  魏琪 《节能技术》2006,24(6):527-530
为缩短吸附制冷周期,采用两床交替吸附/解吸结构,并采用管内走传热介质,管外填充吸附剂的吸附式制冷系统。建立了相应的数学模型。用数值方法对模型进行了求解,着重对吸附床温度场分布进行了数值模拟,并对吸附床内压力,某些点温度以及吸附量随时间的动态变化进行了模拟,得出的结果与实际情况吻合较好,说明此吸附制冷系统有较好的传热效果,为吸附床的优化设计提供了参考依据。  相似文献   

5.
作为打印机热性能分析以及优化热设计的基础,针对影响LED(light emitting diode)彩色打印机性能的内部发热问题,采用流体/传热软件对一款LED彩色打印机的内部温度场进行了数值模拟,得到了不同工作状态下的打印机内部的三维热场分布值,并分析了温度对关键部件的影响。设计了基于热电阻的温度测试系统对打印机内部进行了多点的温度测试,并将测试结果与仿真结果进行了对比,对稳态结果进行误差分析,对瞬态计算进行了温度变化过程对比,验证了数值模拟的准确性。  相似文献   

6.
提出并研制一种新型粘贴干燥剂颗粒的内冷却紧凑式叉流固体除湿器,描述了这种除湿器的物理和数学模型,运用隐式差分格式数值求解该除湿器的偏微分控制方程组,模拟除湿器的动态除湿过程。通过实验得到了该除湿器的实际动态除湿性能,并将除湿器除湿性能的数值模拟结果与实验结果与进行了比较。实验和模拟计算结果均显示:该文研制的新型除湿器在高湿、低湿环境工况下都有良好的除湿性能;实验与计算的结果比较表明,本文所采用的内冷却紧凑式固体除湿器数学模型的数值解与实验结果吻合良好。该文研究结果对研制新型固体除湿(干燥)器具有很好的参考价值和应用价值。  相似文献   

7.
固体氧化物燃料电池三维模拟与性能分析   总被引:1,自引:0,他引:1  
建立了平板式阳极支撑固体氧化物燃料电池的三维数学模型,通过耦合电化学动力学和流体动力学模拟了电池的传热传质等传输现象。采用有限容积法计算了质量、动量、组分与能量守恒方程。研究给出了同向流与反向流情况下电流度密度、电压与功率密度分布。结果显示在同向流情况下,电池的最大功率密度较大,温度分布较均匀合理。进一步研究表明多孔电极结构参数(孔隙率、曲折因子与孔径尺寸)对电池性能有十分重要的影响。比较计算的极化性能与文献的实验数据,结果表明两者吻合的较好。  相似文献   

8.
建立了一个具有蛇形通道,采用Nafion117膜单体质子交换膜燃料电池的三维数学模型,该模型同时考虑了流动、传热、传质、电化学动力学和多组分传输现象。通过求解传输方程组,并耦合电化学动力学方程,获得了电池的极化性能曲线和电池内部的反应物浓度、温度、速度分布。计算结果表明,增加电极孔隙率、提高电池运行温度和压力有助于改善电池性能。估算的极化性能与献中的实验数据基本符合。分析了运行条件对电池性能的影响。  相似文献   

9.
风力机叶片三维数值计算方法确认研究   总被引:2,自引:0,他引:2  
采用CFD软件包FINETM/TURBO,以两叶片NREL PhaseⅥ风力机的风轮为对象,进行了风力机风轮叶片三维绕流的定常粘性数值模拟研究。通过详细对比计算结果与实验数据(包括功率、叶片展向5个截面压力系数分布及沿叶展方向载荷系数分布),确认在大部分风速条件下数值模拟可以很好的预计风力机气动性能。然后分析了计算域尺度、边界条件和湍流模型等对数值模拟结果的影响,为采用CFD技术对实际风力机叶片三维气动性能进行精确数值模拟提供参考。  相似文献   

10.
利用流体力学计算软件F luen t建立平板式阳极支撑固体氧化物燃料电池(SOFC)的三维数学模型。在阳极与阴极多孔电极中使用尘气模型模拟气体质量传输并采用B rinkm an-Forschhe im er-D acy模型来模拟多孔电极中黏性与惯性效应对气体流动的影响。研究给出了燃料气与空气在同向流与反向流情况下组分浓度、电压与温度分布。结果显示在同向流情况下,电池的最大功率密度较大与温度分布较均匀合理。研究给出了多孔电极结构参数(孔隙率、曲折因子与孔径尺寸)对电池性能的影响。结果表明比较计算的极化性能与文献的实验数据两者较好的吻合。  相似文献   

11.
The potential of fuel cells for clean and efficient energy conversion is generally recognized.The proton-exchange membrane (PEM) fuel cells are one of the most promising types of fuel cells. Models play an important role in fuel cell development since they enable the understanding of the influence of different parameters on the cell performance allowing a systematic simulation, design and optimization of fuel cells systems. In the present work, one-dimensional and three-dimensional numerical simulations were performed and compared with experimental data obtained in a PEM fuel cell. The 1D model, coupling heat and mass transfer effects, was previously developed and validated by the same authors [1] and [2]. The 3D numerical simulations were obtained using the commercial code FLUENT - PEMFC module.The results show that 1D and 3D model simulations considering just one phase for the water flow are similar, with a slightly better accordance for the 1D model exhibiting a substantially lower CPU time. However both numerical results over predict the fuel cell performance while the 3D simulations reproduce very well the experimental data. The effect of the relative humidity of gases and operation temperature on fuel cell performance was also studied both through the comparison of the polarization curves for the 1D and 3D simulations and experimental data and through the analysis of relevant physical parameters such as the water membrane content and the proton conductivity. A polarization curve with the 1D model is obtained with a CPU time around 5 min, while the 3D computing time is around 24 h. The results show that the 1D model can be used to predict optimal operating conditions in PEMFCs and the general trends of the impact on fuel cell performance of several important physical parameters (such as those related to the water management). The use of the 3D numerical simulations is indicated if more detailed predictions are needed namely the spatial distribution and visualization of various relevant parameters.An important conclusion of this work is the demonstration that a simpler model using low CPU has potential to be used in real-time PEMFC simulations.  相似文献   

12.
《Journal of power sources》1996,58(2):109-122
A three-dimensional mathematical model of a solid oxide fuel cell is presented, which allows the computation of the local distributions of the electrical potential, temperature and concentration of the chemical species. The physics of the cell and the simplifying assumptions are presented; a sketch of the numerical procedure is also given. The numerical results obtained with hydrogen as the fuel are compared with results from other simulation codes which were developed for a planar geometry. The numerical results show the behaviour of the potential, temperature and current distributions when certain parameters (geometry of the cell, electrolyte materials, temperature in the channels) are varied. Numerical simulation is also used to obtain an optimum for some geometry parameters such as cathode thickness or rib width.  相似文献   

13.
This paper is to experimentally and numerically investigate the cell performance and the localized characteristics associated with a high-temperature proton exchange membrane fuel cell (PEMFC). Three experiments are carried out in order to study the performance of the PEMFC with different operating conditions and to validate the numerical simulation model. The model proposed herein is a three-dimensional (3-D) computational fluid dynamics (CFD) non-isothermal model that essentially consists of thermal–hydraulic equations and electrochemical model. The performance curves of the PEMFC predicted by the present model agree with the experimental measured data. In addition, both the experiments and the predictions precisely demonstrate the enhanced effects of inlet gas temperature and system pressure on the PEMFC performance. Based on the simulation results, the localized characteristics within a PEMFC can be reasonably captured. These parameters include the fuel gas distribution, liquid water saturation distribution, membrane conductivity distribution, temperature variation, and current density distribution etc. As the PEMFC is operated at the higher current density, the fuel gas would be insufficiently supplied to the catalyst layer, consequently causing the decline in the generation of power density. This phenomenon is so called mass transfer limitation, which can be precisely simulated by the present CFD model.  相似文献   

14.
The experimental studies and numerical simulation were conducted on the effects of the dome fuel distribution ratio on the lean blowout of a model combustor.The experimental results indicate that as the key parameter,the dome fuel distribution ratio,increases from 2.06%to 16.67%,the lean blowout equivalence ratio declines obviously at the beginning,and then the decrease slows down,in addition,the amplitude of the pressure fluctuation in the combustor reduces significantly while the dominant frequency keeps basically constant.In order to analyze the experimental results,the numerical simulation is adopted.The temperature and local equivalence ratio distributions are employed to explain the reason why the lean blowout performance improves with the increase of the dome fuel distribution ratio.  相似文献   

15.
《Journal of power sources》1996,62(2):167-174
The production of electricity in a fuel cell system is associated with the production of an equivalent amount of thermal energy, both for large size power plants and for transportation applications. The heat released by the cells must be removed by a cooling system, characterized by its small size and weight, which must be able to assure uniform work conditions and reduce performance losses. Based upon realistic assumptions, a mathematical model has been developed to determine the temperature and current density distribution in a solid polymer electrolyte fuel cell (SPEFC) stack as a function of operating conditions and stack geometry. The model represents a useful tool to identify operating conditions, such as to have an optimal longitudinal and axial temperature profile, so allowing the design of cooling system and bipolar plates. In this paper, the model has been applied to determine the temperature profile of an experimental SPEFC stack. The model is validated by comparing model results with experimental measurements; simulated and experimental results agree satisfactorily.  相似文献   

16.
A two-phase flow model was developed for liquid-feed methanol fuel cells (DMFC) to evaluate the effects of various operating parameters on the DMFC performance. In this study, a general homogenous two-dimensional model is described in details for both porous layers and fluid channels. This two-dimensional general model accounts for fluid flow, electrochemical kinetics, current density distribution, hydrodynamics, multi-component transport, and methanol crossover. It starts from basic transport equations including mass conservation, momentum transport, energy balance, and species concentration conservation in different elements of the fuel cell sandwich, as well as the equations for the phase potential in the membrane and the catalyst layers. These governing equations are coupled with chemical reaction kinetics by introducing various source terms. It is found that all these equations are in a very similar form except the source terms. Based on this observation, all the governing equations can be solved using the same numerical formulation in the single domain without prescribing the boundary conditions at the various interfaces between the different elements of the fuel cell. The numerical simulation results, such as velocity field, local current density distribution, and species concentration variation along the flow channel, under various operation conditions are computed. The performance of the DMFC affected by various parameters such as temperature, pressure, and methanol concentration is investigated in this paper. The numerical results are further validated with available experimental data from the published literatures.  相似文献   

17.
Determination of methanol concentration in a direct methanol fuel cell is crucial for design improvement and performance enhancement. Methanol and water concentrations in a direct methanol fuel cell are experimentally and numerically investigated. In the experimental program, a single cell direct methanol fuel cell is developed and an experimental setup is devised to measure methanol and water concentrations and performance of the cell depending on operating conditions. In theoretical program a mathematical model which includes fluid flow, species distribution, electric field and electrochemistry is adapted and numerically solved. The results showed that the performance of a Direct Methanol Fuel Cell (DMFC) is mainly influenced by operating temperature. A large drop in methanol concentration methanol is measured at the inlet section of cell. The mathematical model is found to satisfactorily capture main physics involved in a DMFC.  相似文献   

18.
For solid oxide fuel cells (SOFCs), biohydrogen is an ideal fuel, which introduces a clean renewable energy source to a highly efficient energy conversion technology with minimum complications. The performance of a SOFC working with biohydrogen, and the effects of fuel composition, working temperature, load, and air utilization are less well understood. In this study a comprehensive numerical model was employed to investigate the biohydrogen fueled SOFC in different working conditions. Direct electrochemical oxidation of H2 and CO and water gas shift reaction (WGSR) were considered in the model. An experimental set up was built to verify the simulation results. Results from the numerical model were validated against experimental polarization curves and cell temperature measurements. The results showed how different parameters affect the performance of a biohydrogen SOFC and how different working conditions can be selected to meet certain criteria.  相似文献   

19.
In this study, a 2-D numerical model is investigated to predict and evaluate the performance of an anode-supported SOFC button cell. The flow field is calculated using 2D Navier–Stokes equations. Heat and mass transfer equations are solved to calculate species and temperature distribution in the cell body and in fuel and air channels. The electrical and electrochemical processes are simulated coupled with the heat and mass transfer model. A discretized network circuit is adopted to the cell geometry for considering the ohmic losses and joule heating of the current that passes through the cell body. The model predicts the cell output voltage, the local EMF and the state variables pressure, temperature and species concentrations. The local electrical parameters are calculated based on the local pressure, temperature and concentration of the species. The numerical results are compared with the experimental data and good agreement is observed. The simulation is carried out for different input fuel flow rates and humidification. The results show how the input fuel mass flow rate and humidification level affects the button cell SOFC performance. In addition, influences of the anode thickness on cell performance through the ohmic over potential are investigated.  相似文献   

20.
Experimental activities and computational fluid dynamics (CFD) simulation are presented in this paper for investigating the performance of an anode-supported solid oxide fuel cell (SOFC). The goal of this work is to assess a commercial CFD code, Star-CD with es-sofc module, to simulate the current–voltage (IV) characteristics with respect to the experimental data. Compiled with the geometry of cell test housing, a 3D numerical model and test conditions were established to analyze the anode-supported cell (ASC) performance including current density and temperature distributions, fuel concentration, and fuel utilization. After adjusting parameters in the electrochemical model, the simulation results showed good agreements with the experimental data. The results also revealed that the power density increased while the fuel utilization decreased as the fuel flow rate increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号