首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 125 毫秒

1.  岩石变形破坏过程中的能量传递和耗散研究  被引次数:2
   赵忠虎  谢和平《四川大学学报(工程科学版)》,2008年第40卷第2期
   岩石变形破坏的过程是和外界产生能量交换的过程.从理论上分析了用能量方法研究岩石破坏问题的合理性,以及岩石在变形过程中弹性能、塑性能、表面能、辐射能、动能之间相互转化的过程、计算原理、以及对岩石破坏所起的不同作用.并分别从宏观和微观的角度研究了在不同的变形阶段中岩石能量耗散与释放问题.在宏观上,岩石变形前期以弹性应变能的方式存储外界提供的能量,同时又通过损伤演化等向外界耗散能量;变形的后期以剧烈的能量释放为主.微观上,存在多种引起岩石应变硬化和应变软化的机制,岩石存储能量还是向外界释放能量取决于这些微观机制竞争的最后结果,基于此推导了岩石变形中能量的传递方程,用试验研究了能量的转化和平衡,以及耗散能和释放能之间的比例关系.结果表明能量耗散导致岩石强度的降低,而能量释放是造成岩石灾变破坏的真正原因.从能量耗散与释放的观点研究岩石的破坏,可以从本质上把握岩石变形和破坏的物理机理,寻找岩石破坏的真正原因,为实际工程提供参考.    

2.  岩石变形破坏过程中的能量传递和耗散研究  被引次数:1
   赵忠虎 谢和平《四川联合大学学报》,2008年第40卷第2期
   岩石变形破坏的过程是和外界产生能量交换的过程。从理论上分析了用能量方法研究岩石破坏问题的合理性,以及岩石在变形过程中弹性能、塑性能、表面能、辐射能、动能之间相互转化的过程、计算原理、以及对岩石破坏所起的不同作用。并分别从宏观和微观的角度研究了在不同的变形阶段中岩石能量耗散与释放问题。在宏观上,岩石变形前期以弹性应变能的方式存储外界提供的能量,同时又通过损伤演化等向外界耗散能量;变形的后期以剧烈的能量释放为主。微观上,存在多种引起岩石应变硬化和应变软化的机制,岩石存储能量还是向外界释放能量取决于这些微观机制竞争的最后结果,基于此推导了岩石变形中能量的传递方程,用试验研究了能量的转化和平衡,以及耗散能和释放能之间的比例关系。结果表明能量耗散导致岩石强度的降低,而能量释放是造成岩石灾变破坏的真正原因。从能量耗散与释放的观点研究岩石的破坏,可以从本质上把握岩石变形和破坏的物理机理,寻找岩石破坏的真正原因,为实际工程提供参考。    

3.  能量耗散与释放原理在水压致裂法中的运用  
   王瑞芳  易少凤《河南理工大学学报(自然科学版)》,2007年第26卷第6期
   在内变量不可逆的热力学理论框架下,从能量的角度出发,讨论了水压致裂测试中岩石变形破坏中的能量耗散、能量释放与岩石强度和破坏的内在联系.同时基于能量耗散与释放原理推导出水压致裂法测量地应力岩体破坏时的临界应力公式,并应用上述公式结合水压致裂第一循环对某抽水蓄能电站地应力测量中的最大水平主应力进行计算,其计算值与传统理论计算值比较接近,表明所给出的临界应力公式是合理的.    

4.  能量耗散与释放原理在水压致裂法中的运用  
   王瑞芳 易少凤《焦作工学院学报》,2007年第26卷第6期
   在内变量不可逆的热力学理论框架下,从能量的角度出发,讨论了水压致裂测试中岩石变形破坏中的能量耗散、能量释放与岩石强度和破坏的内在联系.同时基于能量耗散与释放原理推导出水压致裂法测量地应力岩体破坏时的临界应力公式,并应用上述公式结合水压致裂第一循环对某抽水蓄能电站地应力测量中的最大水平主应力进行计算,其计算值与传统理论计算值比较接近,表明所给出的临界应力公式是合理的.    

5.  粗晶大理岩单轴压缩力学特性的静态加载速率效应及能量机制试验研究  被引次数:3
   黄达  黄润秋  张永兴《岩石力学与工程学报》,2012年第31卷第2期
    加载速率对岩石力学性质具有重要影响,影响的程度与岩石本身的微结构和加、卸载应力路径及状态等密切相关。基于静态加载速率范围内的9个不同等级应变率下粗晶大理岩单轴压缩试验,研究加载应变率对岩石的应力–应变曲线、破坏形态、强度、弹性模量及变形模量与应变能耗散及释放的影响规律,探讨岩石损伤演化的能量机制。根据总体积应变及裂纹体积应变与起裂及扩容应力的相关性,确定各应变率下岩石起裂及临界扩容应力。加载应变率大约以1×10-3 s-1为分界点,小于该值时应力–应变曲线峰值点附近仍存在一定的塑性屈服或流动段,超过该值后表现为“折线”型。随着加载应变率的增加,岩样破裂模式由张剪型逐渐过渡到张性劈裂甚至劈裂弹射。一般而言,起裂及临界扩容应力和峰值应力均随加载速率增大而增大,且起裂及临界扩容应力越接近峰值强度,但当应变率为1×10-4~1×10-3 s-1时,上述值均出现一个相对低值区间,这与粗晶大理岩的微结构特征相关。起裂应力、临界扩容应力、弹性模量及变形模量均与峰值强度线性相关。单轴压缩下峰前能量耗散量越多,强度越高,峰后可释放弹性应变能和释放速率越大,岩石的张性贯通破裂特性愈强,破裂块数越多。能量耗散使岩石损伤而强度丧失,而能量释放使岩石宏观破裂面贯通而整体破坏。    

6.  岩体变形破坏过程的能量机制  被引次数:19
   谢和平  鞠杨  黎立云  彭瑞东《岩石力学与工程学报》,2008年第27卷第9期
    叙述岩体单元变形破坏过程中能量耗散与强度、能量释放与整体破坏等概念。在循环压缩载荷下,实测岩石的能量耗散及损伤,数据拟合表明,基于能量耗散分析建立的岩石损伤演化方程可以较好地描述岩石的损伤演化过程。在循环压缩载荷下同时实测不同加载速度及不同载荷水平下岩体内可释放应变能、耗散能、卸荷弹性模量及卸荷泊松比的变化规律,给出复杂应力条件下卸荷弹性模量的变化公式。基于可释放应变能建立岩体单元的整体破坏准则,该准则与大理岩的双压试验结果符合得比较好。对工程中常见的层状岩体,提出基于畸变能与广义体积膨胀势能而建立的层状岩体破坏准则,该准则与层状岩的双压试验也符合得比较好。    

7.  岩石破坏的能量分析初探  被引次数:36
   谢和平  彭瑞东  鞠杨  ZHOU Hong-Wei  周宏伟《岩石力学与工程学报》,2005年第24卷第15期
   从能量的角度出发,分析研究了岩石的变形破坏过程,揭示了这一过程的能量耗散及能量释放特性。理论及试验研究表明,在岩石变形破坏过程中,能量起着根本的作用。岩石的失稳破坏就是岩石中能量突然释放的结果,这种释放是能量耗散在一定条件下的突变。从力学角度而言,岩石的变形破坏过程实际上就是一个从局部耗散到局部破坏最终到整体灾变的过程;从热力学上看,这一变形、破坏、灾变过程是一种能量耗散的不可逆过程,包含能量耗散和能量释放。现有的力学理论体系主要是强调能量耗散结构和局部破坏过程,而岩石的灾变是以能量释放为其主要特征,所以有必要综合考虑能量耗散及能量释放对岩石变形破坏的影响。试验研究也揭示了应力–应变强度不能很好地描述岩石的破坏这一特性,在大体相同的应力–应变曲线下,试件的破坏形式不同,能量释放量完全不同,因此,从能量的观点可以更好地描述岩石的变形破坏。    

8.  基于能量原理与中间主应力效应的新岩石强度准则探讨  
   牛超颖  贾洪彪  马淑芝  王康《长江科学院院报》,2015年第11期
   能量转化是物质物理过程的本质特征,分析岩石破坏过程中的能量变化规律及其与强度和整体破坏之间的联系,更有利于反映外荷载作用下岩石强度变化与整体破坏的本质特征.从能量耗散与能量释放的角度,基于前人研究成果及中间主应力效应,提出了岩石能量释放基于应力分配的一般形式,并结合最小主应力对能量强度准则进行了分析,提出了新的强度准则.研究表明:运用能量原理研究中间主应力效应是可行的;在最小主应力一定时,能量释放分配系数与岩石极限强度成线性关系,且随着能量释放分配系数的提高,岩石极限强度逐渐降低;新的能量强度准则可以充分考虑中间主应力的影响,从而可以弥补岩石常规破坏判据的不足.    

9.  岩石破坏全过程中的能量变化分析  
   赵忠虎 鲁睿 张国庆《矿业研究与开发》,2006年第26卷第5期
   分析了用能量的方法研究岩石破坏问题的合理性,指出能量是岩石破坏的原动力,从能量的角度进行研究,就有可能发现岩石破坏的机理。进而详细分析了岩石变形破坏过程中,各种耗散能和释放能的种类、大小、以及对岩石破坏所起的不同作用,并分别从宏观和微观的角度研究了在不同的变形阶段中,岩石能量耗散与释放问题。作者认为能量耗散导致岩石强度的降低,而能量释放造成岩石的灾变破坏,从能量耗散与释放的观点研究岩石的破坏,可以避免分析复杂的变形过程,有利于简化问题,找到岩石破坏的真正原因,为实际工程提供参考。    

10.  岩石可释放应变能及耗散能的实验研究  被引次数:4
   黎立云  谢和平  鞠杨  马旭  王利《工程力学》,2011年第3期
   地下岩石结构的变形破坏是能量耗散与能量释放的综合结果。岩石结构内部储藏的可释放应变能和己耗散能的计算,涉及到在当时工况下岩石的卸荷弹性模量和泊松比,并与加载速度与载荷水平有关。该文在不同加载速度及不同载荷水平下,对岩石试件进行了单压加卸载实验,得到了卸荷弹性模量与泊松比、可释放应变能与耗散能的变化规律;进行了SHPB动态冲击实验,实测了试件内的总吸收能;实验分析结果为进一步对岩石结构进行可释放应变能与耗散能总量计算以及对岩石结构破坏程度进行预估计,提供了实验基础。    

11.  应变速率和尺寸效应对岩石能量积聚与耗散影响的试验研究  
   孟庆彬  韩立军  浦海  文圣勇  李昊  李浩《煤炭学报》,2015年第40卷第10期
   岩石的变形破坏过程是能量积聚与耗散的过程,岩石变形破坏是能量驱动的结果。基于不同尺寸与应变速率下的岩石单轴压缩试验,计算了不同尺寸与应变速率下岩样吸收的总能量、弹性应变能及耗散能,研究了能量积聚与耗散的演化规律,分析了在岩样变形破坏不同阶段的能量分配规律,并从能量角度分析了岩样破裂失稳的原因。研究表明:在单轴压缩试验时,岩样变形各阶段的能量特征有所差异,岩样吸收的总能量U0与耗散能Ud曲线呈非线性增加趋势,弹性应变能Ue曲线呈先增加后减小的趋势。岩样的能量与其高径比呈负相关的关系,两者呈幂函数关系;而与应变速率呈正相关,两者呈对数关系。岩石高径比越小或应变速率越大,岩石强度越高,单位体积岩样所吸收的能量也越高,造成岩样的破碎程度越大。在压密与弹性阶段,基本上将吸收的能量全部转化为弹性应变能储存于岩样内,弹性应变能是能量分配的主体。在塑性阶段,虽然弹性应变能的数值增大,但其所占比率有所下降;而耗散能比率有所增加,耗散能逐渐成为能量分配的主体。在峰后破坏阶段,弹性应变能瞬间释放,岩样吸收的能量几乎全部转化为耗散能,被裂隙面滑移摩擦而耗散掉,在峰后破坏阶段耗散能是能量分配的主体。    

12.  高压水射流破岩能量耗散与释放机制  
   刘勇  陈长江  刘笑天  魏建平  王登科《煤炭学报》,2017年第42卷第10期
   从应力-应变角度建立的高压水射流破岩准则,其精确度取决于对屈服应力的表述,由于表达式中不含材料参数,不能精确计算高压水射流破岩参数,而从能量角度建立的岩石强度理论具有更好的适用性和准确性。开展了基于能量耗散和释放机制的高压水射流破岩机理,理论研究了自由射流段速度分布特征,分别计算了等速核区和射流边界层扩展区动能,建立了不同靶距处射流动能计算模型。高压水射流冲击破岩能量表征为冲蚀坑的形成和岩体的体积破坏;射流能量耗散于剪切面的扩展和滑动,储存弹性势能的释放导致岩体的整体体积破坏。根据岩石的统一能量屈服准则,建立了高压水射流破岩能量准则。通过砂岩、灰岩和花岗岩的单轴压缩应力-应变曲线得出3种岩石的材料参数,计算每种岩石的剪切应变能和体积应变能,得出射流破岩临界速度。根据高压水射流冲击破岩实验结果修正了考虑喷嘴流量系数的高压水射流破岩能量准则,该准则能够较为精确的计算射流破岩速度。且岩体的破坏形态证明从能量角度研究破岩机理更为适合。    

13.  高温后岩石变形破坏过程的能量分析  被引次数:1
   徐小丽  高峰  周清  陈静《武汉理工大学学报》,2011年第1期
   从非平衡热力学角度出发,结合岩石在不同高温作用后的单轴压缩和声发射试验,详细阐述了岩石变形破坏过程中的声发射特点,分析了经历不同高温后岩石强度与能量耗散和能量释放之间的关系。研究结果表明高温作用后花岗岩声发射曲线大致经历了以下6个阶段:初始沉寂段、上升段、前峰值段、高幅持续段、后峰值段、后期沉寂段。声发射曲线较好地反映了岩石在整个破坏过程中由稳定态向亚稳定态、临界态、失稳破坏直至新的稳定态的发展过程。岩石峰值强度与耗散能呈反比关系,与弹性能呈正比关系,能量耗散使材料发生劣化,强度降低。声发射能率与弹性能呈正比关系,与耗散能呈反比关系,弹性能突然释放引起岩石的失稳破坏。岩石的破坏是能量耗散与能量释放共同作用的结果。研究结果有助于研究高温后受外载岩石微缺陷的演化并最终破裂的过程,对高温后岩体工程起到一定的参考作用。    

14.  温度压力耦合作用下的岩石屈服破坏研究  被引次数:10
   左建平  谢和平  周宏伟《岩石力学与工程学报》,2005年第24卷第16期
   以深部开采为背景,讨论了温度和压力对深部岩石变形和破坏规律的影响。将岩石的屈服破坏过程视为能量释放和能量耗散的过程,根据最小耗能原理导出了温度和压力耦合作用下的深部岩石屈服破坏准则。该准则具有明确的物理意义,即当岩石的塑性耗散能及温度梯度引起热传导的耗散能累积耗散到一定程度时,岩石就会发生破坏失稳。    

15.  动静组合加载下岩石破坏的应变能密度准则及突变理论分析  被引次数:14
   李夕兵  左宇军  马春德《岩石力学与工程学报》,2005年第24卷第16期
   阐述了岩石在动静组合载荷作用下使用应变能密度定义破坏准则的适用性。分析认为,岩石破坏的应变能密度的临界值与岩石破坏之前的不可逆变形过程和外界条件有关,而不可逆变形过程主要是由于岩石的非弹性变形、损伤和其他内部耗散机制引起的,且反映静水胜力的体积变形能在某些应力状态条件下的岩石破坏中是不能忽略的。提出用机械模型来反映动静组合加载下岩石单元体弹性的劣化和非弹性变形的产生以及加载速率的影响,并以机械模型为基础,求出受一维静载岩石在动载作用下破坏应变能密度的临界值。同时,根据静力预加载结构的冲击屈曲突变模型,建立了静加载岩石系统的冲击破坏模型,进一步分析了动静组合加载下岩石的破坏。最后,采用低周疲劳加载方法在Instron电液饲服摔制材料试验机卜进行了红砂岩中心变率下的动静组合加载破坏试验,对应变能密度准则和突变理论模型进行了验证。结果表明,理论模型与试验结果有较好的一致性。    

16.  高应力强卸荷条件下大理岩损伤破裂的应变能转化过程机制研究  
   黄达  谭清  黄润秋《岩石力学与工程学报》,2012年第31卷第12期
   基于高应力条件下大理岩峰前卸围压试验和能量原理,研究岩样吸收应变能、塑性变形及裂纹扩展耗散应变能、环向变形消耗应变能和弹性应变能储存及释放的能量转化全过程特征,揭示其损伤破裂演化的应变能转化机制.峰前储存的弹性应变能较耗散应变能多,耗散应变能仅在临近峰值强度点附近才明显增加.峰后应力快速跌落伴随着弹性应变能的迅速释放和快速的塑性变形及裂隙扩展所耗散应变能.峰前、峰后应变能转化速率均随卸荷速率的增大而明显增大,特别是峰后转化速率增大得更为剧烈.而初始围压对应变能转化速率的影响与卸荷速率密切相关,快速卸荷时应变能转化速率随初始围压的升高而明显增大,而较慢速卸荷时随围压变化相对不明显,但初始围压增大明显加强峰前弹性应变能储存.峰后弹性应变能释放速率远大于环向变形消耗应变能速率,而吸收的应变能约与耗散应变能基本相等,故高应力强卸荷条件下硬性岩石常表现为近垂直于卸荷方向的张性破裂或劈裂特征,甚至出现岩爆现象.高应力强卸荷条件下大理岩具有峰前快速储存较多弹性应变能和相对较少的损伤耗能,而峰后弹性应变能快速大量释放和耗散,并伴有相对较快速地向卸荷方向的张裂变形消耗应变能的释放与耗散机制.    

17.  用于分析岩爆倾向性的剩余能量指数  被引次数:4
   唐礼忠 潘长良 等《中南工业大学学报》,2002年第33卷第2期
   通过分析岩石变形破坏过程中的能量变化,提出以岩石在峰值强度前储存的弹性应变能和峰值强度后稳定破坏所需的能量耗散之差(即剩余能量)与峰值强度后稳定破坏所需的能量耗散之比作为剩余能量指数,以反映岩石在峰值强度后区的动态特性;推导了剩余能量指数计算公式,并给出了其试验测定方法。此外,分析了将剩余能量指数作为岩爆倾向性指标的合理性,并采用铜陵有色金属冬瓜山深部矿床的典型矿岩进行了峰值前的循环加,卸载试验和变形破坏全过程试验,结合该矿床实际岩爆资料,对剩余能量指数与现有基于能量理论的岩爆倾向性指标进行分析,结果表明该指标能够较好地反映岩石的岩爆倾向性。    

18.  高围压卸荷条件下大理岩变形破坏及能量特征研究  被引次数:1
   陈学章  何江达  谢红强  肖明砾  刘建锋《四川大学学报(工程科学版)》,2014年第46卷第Z2期
   能量的耗散与释放是岩石变形破坏的本质。基于MTS815 Flex Test GT岩石力学试验平台,通过室内三轴卸荷试验和数学物理分析方法,揭示了大理岩在高围压三轴卸荷条件下的应力应变关系及能量变化特征。结果表明,初始围压的增大将显著提升岩样峰值强度时的可释放应变能以及最终总能量;随着围压的增大,岩样所吸收的能量变化的快慢程度随着偏应力变化而有所减缓;峰值强度时岩样可释放应变能占总能量的比例随着围压的增大而急剧增大,而残余强度时所吸收的总能量几乎全部转化为耗散能;大理岩能量指标存在明显的围压效应,即峰值总能量和残余总能量随着围压增大而显著提高,且具有良好的线性关系。    

19.  自然与饱水状态下岩溶灰岩力学性质及能量机制试验研究  被引次数:1
   郭佳奇  刘希亮  乔春生《岩石力学与工程学报》,2014年第2期
   为研究饱水对岩溶灰岩力学性质和能量机制的影响,利用RMT–150B岩石力学试验系统分别对自然和饱水状态试样进行单轴压缩和常规三轴压缩试验。试验结果表明:饱水对岩溶灰岩的强度和变形特征影响显著,2种状态下试样峰值强度与围压的回归关系可用以主应力表达的Coulomb强度准则表征;岩溶灰岩试样的似软化系数及其降低速率均随围压增加而减小。从能量角度对2种状态试样损伤破坏过程中的能量特征进行试验研究,结果表明:饱水状态试样吸收的总应变能U,峰前储存的可释放应变能eU及二者随轴向应变的增加速率均小于自然状态的对应值;随含水量增加eU/U逐渐下降,峰后eU释放率随围压增加而逐步下降,整体上饱水试样的eU释放率较大;峰值应力处试样各应变能随围压线性递增,2种状态下耗散能差值随围压的变化是试样破坏形式差异的内在原因;岩溶灰岩试样全过程能量实时演化过程具有阶段性,2种状态下压密和弹性变形阶段耗散能差别细微,但进入屈服阶段后,饱水状态试样耗散能增加更快。    

20.  岩石剪切破坏过程的能量耗散和释放研究  
   陈旭光  张强勇《采矿与安全工程学报》,2010年第27卷第2期
   地下工程的特殊地质环境和岩石自身的构造(存在微裂隙)决定了岩石的破坏主要以压剪破坏为主.而地下硐室的破坏如岩爆等也以剪切型破坏为主.剪切型裂纹与张性裂纹的不同使得岩石破坏时释放出较大的能量.岩石破坏过程中自身力学参数的弱化,使得应力应变关系并不能准确反映岩石变形破坏的本质.因此,以能量的耗散和释放原理,分析了岩石变形破坏过程中的能量变化,并以单轴压剪破坏为例研究了岩石破坏过程的各种能量的传递、转化关系,计算了压剪破坏后岩石释放的各种能量所占总变形能的比例,对认识硐室围岩应力重分布后积聚的可释放变形能的能量分配,硐室发生岩爆时动能大小及岩爆的量级,具有一定指导意义.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号