首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental investigations and modeling of linear elasticity of fiber-reinforced clayey sand under cyclic loading unloading are conducted in this paper. Experimental studies are focused on four aspects. First, a series of cyclic triaxial tests, with different confining pressures and deviator stress ratios up to 150 cycles, are performed. Impacts of fiber content, cell pressure, deviator stress ratio and loading unloading repetition that affect dynamic behavior of the composite material are discussed. It is shown that shear modulus decreases with increasing deviator stress ratio at high confining pressure and the rate of loss of shear modulus found to be much lower for fiber reinforced specimens. Other results show that increase of shear modulus with loading repetition is more pronounced at higher deviator stress ratios. Second, the optimum fiber content is experimented under cyclic loading unloading and is expressed as a power function of deviatoric stress ratio. It is shown that optimum fiber content is not constant and it is affected by deviator stress ratio. Third, a function is introduced to describe the linear stress–strain curve under cyclic loading unloading using equivalent linear analysis. The shear modulus G is expressed as a function of fiber content, confining pressure, deviatoric stress ratio and loading repetition. Finally constitutive coefficients of the model parameters are calibrated by the results of cyclic triaxial shear tests and using the linear regression.  相似文献   

2.
3.
Small and intermediate strain properties of soils are key parameters to assess ground motion characteristics during an earthquake and other dynamic events. These properties are affected by various parameters. Among them, the effect of anisotropic stress state on the soil specimen is interest of investigation in this paper. Experiments were carried out using the modified resonant column device at Ruhr Universität Bochum on dry Hostun sand with relative density of 35%-95%. The results show the significant effect of density and anisotropic stress states on the small strain properties, Gmax, of Hostun sand. At intermediate strain level, the results show the significant effect of anisotropic stress state on the shear stiffness and damping ratio. In addition, it is concluded that the effect of compression stress component on the small and intermediate strain properties is more significant than the effect of the deviatoric stress component. At the end, the paper shows the successful application of stress-based approach to describe G(γ) and η(γ) in Hostun sand subjected to the isotropic and anisotropic stress states.  相似文献   

4.
The strength and deformation properties of maritime geotechnical structures made primarily of calcareous sand are critical for project safety, and geogrid reinforcement is a promising new approach. A series of consolidated drained triaxial experiments were conducted to evaluate the mechanical property and deformation behaviors of geogrid reinforced calcareous sand (GRCS), taking into consideration the impacts of the geogrid layer, relative density, particle size, and confining pressure. In comparison to the unreinforced calcareous sand, the strength of the GRCS is greatly enhanced, and the deviatoric stress-strain curves are altered from slightly softening to hardening, as well as the suppressed shearing dilatancy. The geogrid, relative compactness, particle size, and confining pressure are all intimately related to the volume changes and shearing dilatancy of reinforced specimens, but particle crushing is mostly impacted by the confining pressure. The interactions of geogrid ribs and calcareous sand particles are summarized as two types of constraint and friction using scanning electron microscope tests to establish a simplified calculation method of horizontal and vertical equivalent additional stresses that could provide a reference for revealing the mechanical mechanism of GRCS.  相似文献   

5.
为了研究水泥对滨海风积砂的固化作用,设计了一系列三轴试验,分析了在高含水量状态下有效围压、水泥剂量和龄期对风积砂应力—应变曲线和孔压曲线发展规律的影响。结果表明:纯砂样的偏应力峰值和初始有效围压的拟合关系近似呈线性关系;在CD试验中,随着水泥剂量的增大,试样偏应力峰值明显增强,但低水泥剂量(2%)下偏应力峰值反而比纯砂样低;在CU试验中,由于水泥阻碍了孔压的消散,使得试样强度反而比砂样的略为降低;胶结样峰值强度与水泥剂量的拟合关系近似呈二次项关系;和7天相比,龄期28天对强度的贡献不大。试验结论对研究滨海地区风积砂路用性能具有实用价值。  相似文献   

6.
In this paper, an experimental investigation is conducted to study the mechanical behavior of saturated natural loess, saturated natural filling in ground fissure and their corresponding saturated remoulded soils under three consolidated undrained triaxial stress tests, namely, conventional triaxial compression test (CTC), triaxial compression test (TC) and reduced triaxial compression test (RTC). The test results show that stress-strain relation, i.e. strain-softening or strain-hardening, is remarkably influenced by the structure, void ratio, stress path and confining pressure. Natural structure, high void ratio, TC stress path, RTC stress path and low confining pressures are favorable factors leading to strain-softening. Excess pore pressure during shearing is significantly affected by stress path. The tested soils are different from loose sand on character of strain-softening and are different from common clay on excess pore water pressure behavior. The critical states in p′-q space in CTC, TC and RTC tests almost lie on one line, which indicates that the critical state is independent of the above stress paths. As for remoulded loess or remoulded filling, the critical state line (CSL) and isotropic consolidation line (ICL) in e-log p′ space are almost straight, while for natural loess or natural filling, in e-log p′ space there is a turning point on the CSL, which is similar to the ICL.  相似文献   

7.
以南京砂的固结不排水试验为基础,对其稳态特征进行了研究。结果表明:在低围压下稳态线的曲线表达更符合实际情况,松散南京砂在低围压下广义剪应力终值接近于 0 而表现出不稳定;稳态是土体固有属性,稳态内摩擦角不仅可以通过稳定状态下的关系得到,也可通过同一围压下不同密实度南京砂的有效应力路径末端拟合得到,本研究得到南京砂稳态内摩擦角为 35.2 °;峰值强度高估了流滑中土体的强度,土体实际发挥的是残余强度,研究中建立了南京砂峰值强度和残余强度的关系;脆性指数能较好地反映南京砂应变软化程度和流滑的可能性;孔隙比的微小变化可导致南京砂软化程度的较大变化。  相似文献   

8.
The effect of temperature on the shearing response of saturated, dense sand was investigated using a series of temperature-controlled, isotropically-consolidated, hollow cylinder triaxial compression tests, where specimens were heated in drained conditions followed by shearing in undrained conditions. As expected, the deviatoric stress at the peak state (i.e., the undrained shear strength) was observed to increase with increasing initial mean effective stress. However, it was observed to decrease linearly with increasing temperature. The effects of temperature on the deviatoric stress at the peak state were attributed to a linear increase in the magnitude of negative shear-induced pore water pressure at the peak state with temperature. The relationship between the undrained shear strength and the pore water pressure with changes in temperature was represented well by linear equations. When the shear strength was interpreted in terms of the critical state, no obvious changes in the critical state line in the p-q plane were observed, and the critical state friction angle was unaffected by temperature. During drained heating, the dense sand specimens were observed to expand volumetrically, causing the normal consolidation line in the e-p/pa0.5 plane to shift upward with increasing temperature without a change in the slope. The negative pore water pressure during undrained shearing caused the state paths of the dense sand specimens to move to the right. As the magnitude of negative pore water pressure increased with increasing temperature, no obvious effects on the critical state line in the e-p/pa0.5 plane were observed.  相似文献   

9.
A series of undrained triaxial compression tests was performed on Toyoura sand in order to investigate the behavior of sand under large deformation. The present study focuses on the effects of anisotropic consolidation on the undrained behavior of sand. A wide range of initial states of sand is covered and taken into account with the behavior of sand varying from contractive to dilative. Different states of consolidation stress were shown to affect the stress-strain behavior of sand and the development of excess pore water pressure up to an axial strain of 5%. Beyond a strain in excess of 10%, the behavior of sand was shown to become independent of the stress state at consolidation. Consequently, the relation between void ratio and confining stress at steady state and quasi-steady state are independent of the extent of anisotropic consolidation. Moreover, the initial dividing curve between dilative and contractive behaviors in an e ~ p' diagram was shown to move down as the sand is more anisotropically consolidated.  相似文献   

10.
This fundamental study investigates how two very different types of fibers, very elongated polypropylene fibers with high tensile resistance, and larger rubber fibers with a smaller aspect ratio and low shear and Young's moduli affect the compression and shearing of a soil. The same host soil was used for both types of fibers, a well-graded decomposed granite. As well as providing a realistic base for the study with its well graded nature, the decomposed granite's tendency to contract upon shearing is used to highlight the underlying mechanisms causing any difference in behavior. The soil mixtures were prepared at an optimal fiber content for each kind. The general patterns of behavior of the reinforced soils, such as the stress-dilatancy behavior, and the normal compression and critical state lines, are compared. It is found that the specimens with rubber fibers are initially much less stiff than those with polypropylene fibers, so that they require larger deformations to reach failure. At failure, they can provide as much extra strength as polypropylene fibers if the rubber fiber-soil mixture has been consolidated to a low confining stress, although very much larger quantities are needed, even to the point of being unrealistic for engineering applications. At high confining pressures, the rubber fibers, which have become slack during compression, tend to lose in efficiency. The soil reinforced with polypropylene fibers develops consistently higher strength, but the compressive nature of the base soil has the effect of hindering their full mobilization as would be seen in a dilative soil.  相似文献   

11.
As a modification of the deviatoric hardening plasticity model, a material state-dependent model was proposed to simulate the response of unsaturated sand containing gas bubbles under undrained triaxial conditions. Affected by the compressibility of gas, the stress paths under undrained conditions approach the drained response of sand when the initial degree of saturation is low. Upon an increase in the degree of saturation, the stress path gradually approaches the saturated undrained response. According to the prediction based on the second-order work criterion, static liquefaction occurs in loose sand, but not in dense sand. Increases in the degree of saturation and the initial gas pressure reduce the stress ratio at the instability points. The instability line obtained by connecting those instability points in the p-q space is nonlinear, and its slope depends on the initial void ratio, the initial degree of saturation, the initial gas pressure, and the confining stress. After comparing the experimental results in the literature with the theoretical prediction, the proposed model was shown to precisely predict the onset of the static liquefaction of unsaturated sand containing gas bubbles.  相似文献   

12.
非饱和土临界状态给出了土变形过程的终点,对于分析土的基本力学性质和建立相应的本构模型十分重要。以非饱和粉砂为研究对象,利用非饱和土双压力室三轴试验系统(GDS)开展相关试验研究,对不同干密度粉砂在不同净应力和吸力条件下剪切至临界状态过程中,分别测定了强度、体变、含水率及饱和度等相关状态参量的变化规律。结果表明:剪切至临界状态过程中,不同干密度非饱和粉砂的强度和变形特性差异明显;随轴向应变的不断增加,不同初始干密度粉砂试样的偏应力、体应变以及饱和度曲线最终趋于稳定值,试样剪切达到临界状态。基于试验结果,揭示了临界状态条件下非饱和粉砂强度、孔隙比、孔隙水比体积随吸力的变化规律,并建立了q–p?、ν–ln p?、νw–ln p?平面内的临界状态线方程,提出了从强度、变形和孔隙水三个方面对非饱和粉砂临界状态进行综合描述的方法。  相似文献   

13.
关于砂土临界状态线的传统研究主要集中于两点,临界状态线的唯一性和线性性质。然而,作为影响临界状态的重要因素,应力路径和主应力旋转一直被忽视,更鲜有将二者结合的研究。室内试验也无法在保证应力路径的同时,观测主应力旋转的存在。为了弥补这些缺憾,在多应力路径前提下,加入含主应力旋转的应力路径,对密砂进行双轴压缩试验和单剪试验的颗粒流数值模拟研究,得出以下结论:(1) 密实砂土的临界状态线表现出唯一性;(2) 在平均有效应力–偏应力空间和平均有效应力–比体积空间,密砂临界状态线都出现从低临界值向高临界值过渡的阶段性变化。因此,将应力路径单一化有不合理之处;而多应力路径,尤其含有特殊路径的多应力路径,将极大的影响密砂临界状态线性质,应该受到重视。  相似文献   

14.
《Soils and Foundations》2002,42(2):71-82
Ring shear and shear box tests were used to investigate the relationship between volume change and particle breakage during the shearing of two sands. One sand was a carbonate sand which was sheared under a high confining stress to examine whether, in the region of compressive shearing behaviour due to particle breakage, the breakage would ever cease and the soil reach a stable grading. The other sand tested was a quartz sand that was sheared at low confining stresses, to investigate whether a dilatant sand would also be subject to particle breakage. In both cases breakage was found to continue to very large strains, with no evidence of a stable grading being reached within the range of strains used. While the breakage was very small for the quartz sand it was large for the carbonate, emphasising that any definition of a critical state by means of conventional triaxial or shear box testing would be approximate only, because of the limited strains that they allow.  相似文献   

15.
 砂土材料常压至高压下的强度、变形特性是构建砂土模型的首要问题。开展3种粒组砂土8 MPa围压范围内的等向压缩试验以及0.2~6.4 MPa围压范围内的三轴剪切试验,将砂土常压至高压范围内的力学特性进行系统分析,以获得能够将常压至高压范围内的强度、变形特性进行统一描述的力学参数。通过研究发现:(1) 砂土在高压下出现一定量的颗粒破碎,改变了砂土的剪切耗能机制,使得砂土三轴压缩剪切由剪胀软化特征向剪缩硬化特征转变;(2) 砂土材料的三轴压缩剪切峰值应力比受砂土粒径、围压共同影响,M-C强度准则在高压条件下不再适用;而残余应力比则基本不受粒径、围压的影响,是典型的无黏性摩擦型岩土力学参数,应作为砂土基本力学特性指标;(3) 砂土材料在常压至高压范围内的剪切过程中存在较明显的临界状态现象,临界状态曲线与等向压缩曲线形态相同均呈指数衰减型并在高压条件下产生交叉,两者共同构成砂土材料的状态区间能够体现常压至高压范围内的剪胀与剪缩特征。  相似文献   

16.
针对具有不同初始含水率的两种饱和重塑黏土进行了一系列的三轴固结不排水剪切试验,探讨初始含水率对黏土临界状态的影响,得到了不同初始含水率重塑土的应力-应变关系和有效应力路径。根据应力-应变关系曲线发现不同初始含水率重塑土均存在临界状态应力比。基于临界状态土力学理论研究了在p´-q平面和v-lnp´平面内临界状态线随初始含水率的变化规律,并分析了初始含水率对临界状态参数的影响。  相似文献   

17.
This experimental investigation evaluates the compressibility and small strain stiffness of sand reinforced with discrete synthetic fibers. Varying fiber contents (FC), fiber aspect ratios (AR), and void ratios were selected as testing variables in this study, and the modified oedometer tests were conducted to measure the compression index (Cc) and maximum shear modulus (Gmax) of fiber-reinforced sand. The results of this study demonstrate that the Cc of the tested fiber-reinforced sand increases with an increase in FC because the packing of sand grains in the fiber-reinforced sand is very loose due to a disruption of direct contact between the sand grains due to the presence of long discrete fibers. Additionally, this disruption of direct contact between sand grains due to the fibers results in a reduction of interparticle contact and coordination number between sand grains. Therefore, the Gmax of tested fiber-reinforced sand decreases with an increase in FC. Most notably, the Gmax of the tested fiber-reinforced sand with varying FC and AR can be expressed as a single function of the void ratio at a given applied stress, which implies that the inclusion of fibers just alters the packing state of sand grains, and the interparticle contact stiffness is mainly determined by the contacts between sand grains.  相似文献   

18.
钙质砂广泛分布于中国南海区域,是吹填造陆的重要材料。钙质砂颗粒容易破碎,使得其力学特性相比于普通的陆源硅质砂有显著差异。对取自中国南海西沙群岛某岛礁的钙质砂开展了三轴排水循环剪切试验,研究了围压、循环应力比、循环振次对钙质砂颗粒破碎发展过程的影响。在试验所采用的围压范围内,钙质砂在固结过程中产生的颗粒破碎较少,但是在随后的循环剪切过程中产生了显著的颗粒破碎。在循环剪切作用下,钙质砂的颗粒破碎形式主要是尖角的磨损,剪切后试样的颗粒中出现了一些碎屑和微细颗粒,大颗粒的棱角有一定程度的磨圆,但粒径无明显减小。在常围压下的等幅循环剪切中,颗粒破碎程度随着循环剪切次数的增大而增加,增长速率逐渐降低,可以采用对数曲线来描述相对破碎指数的发展过程。再考虑围压和循环应力比的影响规律,初步建立了一个描述颗粒破碎演化过程的数学模型。  相似文献   

19.
饱和软粘土的不排水循环累积变形特性   总被引:31,自引:4,他引:31       下载免费PDF全文
在上海地区典型饱和软粘土不排水循环三轴试验的基础上,分析了影响软粘土塑性累积变形的主要因素:循环荷载的作用次数,初始静偏应力和循环加载动偏应力。基于临界状态土力学理论,引入了相对偏应力水平参数,考虑初始静应力、循环动应力和不排水极限强度的相互影响,研究了不同静、循环动应力组合应力历史影响下饱和软粘土的不排水循环累积变形特性。  相似文献   

20.
Monotonic and cyclic triaxial tests were carried out on sand-silt mixtures for the investigation of the effect of fines content on their critical state and liquefaction resistance characteristics. Both the undrained and the drained monotonic tests produce a unique critical state line for each tested mixture, which moves downwards with increasing fines content up to a threshold value of 35% and then upwards. At a given void ratio and mean effective stress, the liquefaction resistance ratio decreases with increasing fines content up to the same threshold value of 35%, and increases thereafter with further increasing fines content. However, at a given intergranular void ratio, defined as the ratio of the volume of fines plus voids to that of sand particles, liquefaction resistance ratio increases with increasing fines content up to the threshold value. The threshold fines content value, which is an important parameter in determining the transition from the sand dominated to the silt dominated behaviour of sand-silt mixtures, is related to their particle packing. An expression is proposed for the estimation of the threshold fines content as a function of the mean diameter ratio, d50/D50, and the void ratio. The results, presented herein, also show that for each tested mixture the liquefaction resistance ratio is related to the state parameter and that this relation is influenced by the effective stress level and fines content. The results on the sand-silt mixtures are supported by similar results on natural silty sands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号