首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建筑材料CO_2排放是建筑碳排放的重要组成部分。利用生命周期评价理论,将建筑材料生命周期进行了划分,总结出了建筑材料生命周期碳排放的核算模型。利用该核算模型,对天津市38栋住宅的建筑材料生命周期碳排放量进行了计算,并对计算结果进行了分析。发现住宅建筑的单位面积建筑材料碳排放平均值为366. 70 kgCO_2/m~2,其中,钢材、混凝土和砂浆的碳排放量可占80%以上;住宅建筑的建筑面积、标准层面积和层数等参数均与其单位面积碳排放量有着较好的正相关性。之后,分别以建筑面积、标准层面积及层数为自变量,通过统计学方法构建了建筑材料生命周期碳排放的预测模型,并验证了各预测模型的科学性和准确性。  相似文献   

2.
沈丹丹 《建筑施工》2021,43(10):2162-2166
建立建筑全生命周期碳排放量计算模型,定量研究生产、运输、建造、运行、拆除和回收不同阶段的碳排放量,并以上海某公共建筑为案例,进行了建筑全生命周期碳排放量的计算,结果表明,该建筑全生命周期单位面积碳排放量指标为2.72 t/m2,运行期间的建筑碳排放量在建筑全生命周期碳排放量占比最高,其次为建材生产阶段.降低运行阶段的能源需求,选择可再循环和碳排放因子小的建材、减少建筑材料的使用和浪费有助于降低建筑全生命周期碳排放量.该模型的建立,可为建筑全生命周期碳排放计算提供依据,为优化设计方案、建造方案和运行方案提供方法指导.  相似文献   

3.
沈丹丹 《建筑施工》2021,43(10):2162-2166
建立建筑全生命周期碳排放量计算模型,定量研究生产、运输、建造、运行、拆除和回收不同阶段的碳排放量,并以上海某公共建筑为案例,进行了建筑全生命周期碳排放量的计算,结果表明,该建筑全生命周期单位面积碳排放量指标为2.72 t/m2,运行期间的建筑碳排放量在建筑全生命周期碳排放量占比最高,其次为建材生产阶段.降低运行阶段的能源需求,选择可再循环和碳排放因子小的建材、减少建筑材料的使用和浪费有助于降低建筑全生命周期碳排放量.该模型的建立,可为建筑全生命周期碳排放计算提供依据,为优化设计方案、建造方案和运行方案提供方法指导.  相似文献   

4.
沈丹丹 《建筑施工》2021,43(10):2162-2166
建立建筑全生命周期碳排放量计算模型,定量研究生产、运输、建造、运行、拆除和回收不同阶段的碳排放量,并以上海某公共建筑为案例,进行了建筑全生命周期碳排放量的计算,结果表明,该建筑全生命周期单位面积碳排放量指标为2.72 t/m2,运行期间的建筑碳排放量在建筑全生命周期碳排放量占比最高,其次为建材生产阶段.降低运行阶段的能源需求,选择可再循环和碳排放因子小的建材、减少建筑材料的使用和浪费有助于降低建筑全生命周期碳排放量.该模型的建立,可为建筑全生命周期碳排放计算提供依据,为优化设计方案、建造方案和运行方案提供方法指导.  相似文献   

5.
建筑物化阶段的CO2排放时间集中、绝对量大,是建筑节能减排的研究重点。构建了办公建筑物化阶段CO2排放的计算模型,包括建材、设备生产与运输的CO2排放,以及施工过程的CO2排放。利用该计算模型,分析计算了78栋办公建筑物化阶段的CO2排放量。平均来看,物化阶段的碳排放量为326.75kg/m2;随着建筑高度的增加单位面积碳排放明显增加,超高层建筑的单位面积碳排放量是多层建筑的1.5倍;土建工程的碳排放量占到物化阶段的75%左右,而钢筋、混凝土、砂浆、墙体材料的碳排放量占到了土建工程的80%以上。分别以建筑层数和建材用量为自变量做了办公建筑物化阶段CO2排放量的预测模型,通过统计学的分析对比,发现以钢筋、混凝土和墙体材料为自变量的预测公式可以很好地预测建筑物化阶段的碳排放。  相似文献   

6.
公共建筑是节约能源资源的重要领域,对全社会的节能减排起着引领作用。选取寒冷地区一栋办公建筑,对其用能情况进行实地调研和数据收集,采用碳排放系数法对全寿命周期的碳排放量进行计算,全面解析建筑全寿命周期碳排放的构成,对建材生产及运输阶段、建造阶段、运行阶段及拆除阶段进行减碳潜力研究。结果表明:当建筑废弃物回收比例提高1倍时,未来同体量建筑建材生产及运输阶段的碳排放量减少0.28%;当建筑的使用年限从50年延长至100年时,碳排放强度减少14%。  相似文献   

7.
针对当今公共建筑耗能与碳排放量大的问题,以传统低碳建筑研究方法为媒介,将建筑全生命周期简化为材料生产阶段,建造施工阶段,运行使用阶段和拆除处理阶段,并配合DeST软件模拟出建筑运行使用阶段的能耗值。通过对大连地区某高层办公楼进行全生命周期内的碳排放计算,归纳全生命周期中办公建筑各阶段的碳排放的特点,为方案设计中碳排放控制提供依据,为低碳建筑设计从方案本身考虑运行使用阶段的减碳提供理论指导。  相似文献   

8.
为测算建筑工程全生命周期碳排放,基于全生命周期理论,将建筑全生命周期分为建材生产、运输、施工安装、运营使用和维护更新、废弃与拆除 5 个阶段,分别分析各阶段碳排放的来源,运用碳排放因子法确定各阶段碳排放计算方法,构建建筑全生命周期碳排放测算模型,结合广州市某高校办公楼改扩建工程案例,分析各阶段碳排放特点与强度,为建筑碳排放测算研究提供参考。测算结果表明,建筑材料生产和建筑运营维护是建筑全生命周期碳排放最大的阶段,分别占该建筑全生命周期碳排放的 30.03%和 68.00%。同时也是减排潜力最大的阶段。  相似文献   

9.
住宅建筑生命周期碳排放研究综述   总被引:2,自引:0,他引:2  
本文从住宅建筑生命周期碳排放的阶段划分和计算2个方面入手,介绍了近年来国内外住宅建筑生命周期碳排放的研究进展,得到了2点基本认识:一是传统的线性生命周期阶段划分已经不能满足可持续发展的要求,需要在消耗型建筑生命周期中加入循环的概念;二是在计算住宅建筑碳排放时,为了保证其完整性和准确性,应侧重主要排放阶段,并考虑建筑以外的一些影响因素.据此,笔者认为,我国住宅建筑生命周期碳排放的阶段可以划分为原材料生产、建筑施工、建筑使用、维护、建筑的废弃和处理5个阶段.在计算碳排放时,应将重点放在建筑使用阶段,可忽略建筑施工阶段,同时还应注意科技发展对不同阶段碳排放量变化的影响,以及建筑废物回收和住区绿地的负碳排放效应.  相似文献   

10.
以国内首家三星级绿色建筑运行标识酒店——天津京蓟圣光万豪酒店为例构建了酒店运行阶段碳足迹模型,引入了客人碳足迹对酒店客人人均碳排放指标进行量化,并开发了碳足迹记录软件。本酒店理论碳减排19.7%,经过全年实际运营数据分析,酒店能源消耗碳排放强度为105.25 kgCO_2/(m~2·a),较普通酒店碳排放降低了35.63%,客房区域客人碳排强度为10.32~15.51 kgCO_2/(p·a),酒店客人人均碳排放强度为48.76 kgCO_2/(p·a),空调碳排放和照明碳排放是降低酒店碳排放的重点,研究内容为探索低碳酒店运行提供了参考。  相似文献   

11.
太阳能技术的引入在建筑使用阶段达到了低碳减排的目的,然而"低碳"不能依靠末端减排。作为一项系统工程,真正实现低碳建筑要靠系统减排。该文以"零能耗太阳能住宅产品"为例,通过核算建筑全生命周期(主要是建材开采、生产阶段和建筑使用阶段)的碳排放,客观、真实地反映太阳能光伏技术的应用对建筑全生命周期碳排放的影响。结论:由于使用太阳能系统,使用阶段的碳排放量降低了90%,然而太阳能系统在建材生产阶段的碳排放量也是不容忽视的,太阳能光电板生产的碳排放占总建材碳排放量的41%,必须纳入到建筑碳排放的全生命周期中去考虑。  相似文献   

12.
建筑的物化阶段具有碳排放时间集中、排放量大的特点,是应对气候变化和节能减排的关键阶段。因此通过界定建筑物化阶段碳排放的系统边界,采用简化的生命周期评价方法,可以在建筑方案设计中快速计算建筑物化阶段碳排放量。本文利用基于过程的清单分析方法,研究了129栋住宅建筑在物化阶段的建材碳排放量。统计结果显示,住宅建筑在物化阶段建筑材料的碳排放量按面积加权平均值为514.66 kg CO_2e/m~2。其中,钢、商品砼、墙体材料、砂浆、铜芯导线电缆、建筑陶瓷、PVC管材、保温材料、门窗和水性涂料十类建材的碳排放量达到了建筑物化阶段总建材碳排放量的99%,是物化阶段碳排放最为主要的建材。其中,土建工程中钢、商品砼和砂浆这几种主要建材碳排放量在砖混结构、剪力墙结构、框架结构和框剪结构的住宅建筑中趋势依次递增。在建筑方案设计中控制这十类建材的用量,选用低环境影响的建材产品可以有效降低建筑物化阶段的碳排放。  相似文献   

13.
基于全生命周期的建筑工程碳排放计算模型   总被引:2,自引:0,他引:2  
为核算建筑全生命周期的碳排放量,将建筑生命周期分为设计阶段、物化阶段、使用维护阶段与拆除回收处理阶段,将建筑全生命周期的碳排放活动归结为能源、建筑材料、机械的碳排放,在求出每单位能源、建筑材料、机械的碳排放量的基础上,运用碳排放因子方法计算二氧化碳排放量,并给出具体计算公式,构建全生命周期碳排放核算模型。结合具体实例进行实证应用,简要分析了各阶段的碳排放量比例,为建筑业的碳排放核算研究提供参考。  相似文献   

14.
对建筑施工过程产生的二氧化碳(CO_2)排放进行了研究。建立了基于工程消耗量定额和施工机械碳排放因子的CO_2排放量计算方法,并以商业建筑和学校建筑2个案例为对象对施工碳排放进行了研究。结果表明,2栋建筑施工过程的单位面积CO_2排放量分别为11.5kgCO_2/m~2和11.6kgCO_2/m~2。计算了土石方工程、桩基工程、砌筑工程、混凝土工程、钢筋工程、模板工程、装饰工程以及措施项目的CO_2排放量。结果表明,桩基工程和措施项目排放的CO_2最多,贡献超过50%的CO_2排放,其次是钢筋工程和混凝土工程,模板和砌筑工程排放的CO_2很少。对不同类型施工机械的CO_2排放量进行了研究,结果表明,排在前10位的机械约占总CO_2排放量的90%。塔式起重机、电焊机、钻机、打桩机、载重汽车、挖掘机和混凝土泵车是CO_2排放量最大的机械。这些研究结果可以帮助施工管理者确定低碳施工方法和机械,以便在施工阶段最大限度地减少碳排放。  相似文献   

15.
分析建筑全生命周期碳排放构成,提出基于碳排放系数的建筑全生命周期碳排放量理论计算方法;构建并分析建筑信息模型,并按照理论计算方法设计建筑全生命周期碳排放度量平台,在此基础上指出其在建筑设计、建造、运行及拆除阶段的应用优势与方法。  相似文献   

16.
对夏热冬暖地区某居住建筑的生命周期碳排放量进行计算,并分析建筑生命周期内碳排放指标的特征。对建筑生命周期碳排放量各阶段占比和碳排放指标进行分析,结果表明:建筑运营阶段碳排放占居住建筑生命周期碳排放总量的比重最大,其次是建材生产阶段;加强运营阶段碳排放的管理监督,以及增加建筑使用年限是降低建筑碳排放的有效途径。  相似文献   

17.
对夏热冬暖地区某居住建筑的生命周期碳排放量进行计算,并分析建筑生命周期内碳排放指标的特征。对建筑生命周期碳排放量各阶段占比和碳排放指标进行分析,结果表明:建筑运营阶段碳排放占居住建筑生命周期碳排放总量的比重最大,其次是建材生产阶段;加强运营阶段碳排放的管理监督,以及增加建筑使用年限是降低建筑碳排放的有效途径。  相似文献   

18.
从生命周期角度研究了建筑陶瓷的碳排放情况,具体边界涵盖原材料开采及运输、产品生产三个过程,提出了碳排放计算方法,并对华东地区的建筑陶瓷碳排放进行了分析计算,讨论了减排方向。结果表明,建筑陶瓷生命周期碳排放为0.714 kgCO_2/kg。其中,产品生产阶段的碳排放所占比重最高,为81.23%。  相似文献   

19.
选取湖北省恩施市某绿色建筑为例,对其全生命周期内的碳排放进行计算分析。结果表明,该建筑全生命周期的碳排放主要集中在建筑物使用和建材生产阶段,其中建筑使用阶段碳排放占比达80%以上,而建筑建造阶段及拆除阶段碳排放较少。同时,由于采用绿色建筑技术,折算后的建筑单位面积年碳排放量,均低于恩施同期设计建造建筑的年单位面积排放水平,节能减排效果较为显著。  相似文献   

20.
本文采用全生命周期理论,来估算建设工程施工阶段的碳排放。建筑施工碳排放量估算包括建筑材料和周转材料在生产和运输中的碳排放,现场施工中的碳排放,建筑垃圾回收利用过程中碳的减排量。估算碳排放量的关键是各种建筑材料周转材料的碳排放因子。通过对建设工程施工阶段的碳排放的估算来评价建设工程施工阶段的碳排放量的水平,为绿色建筑和绿色施工评价提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号