共查询到20条相似文献,搜索用时 15 毫秒
1.
Alberto Figoli Alfredo Cassano Alessandra Criscuoli M. Tamez Uddin Enrico Drioli 《Water research》2010,44(1):97-104
Arsenic contamination of surface and groundwater is a worldwide problem in a large number of Countries (Bangladesh, Argentina, Italy, USA, New Zealand, etc.). In many contaminated areas a continuous investigation of the available arsenic removal technologies is essential to develop economical and effective methods for removing arsenic in order to meet the new Maximum Contaminant Level (MCL) standard (10 μg/l) recommended by the World Health Organization (WHO).In this work the removal of pentavalent arsenic from synthetic water was studied on laboratory scale by using two commercial nanofiltration (NF) spiral-wound membrane modules (N30F by Microdyn-Nadir and NF90 by Dow Chemical). The influence of main operating parameters such as feed concentration, pH, pressure and temperature on the As rejection and permeate flux of both membranes, was investigated. An increase of pH and a decrease of operating temperature and As feed concentration led to higher As removal for both membranes, whereas higher transmembrane pressure (TMP) values slightly reduced the removal achievable with the N30F membrane. In both cases, the permeate flux increased with temperature and pressure and reached its maximum value at a pH of around 8.Among the parameters affecting the As rejection, feed concentration plays a key role for the production of a permeate stream respecting the limits imposed by WHO. 相似文献
2.
The use of turbulence promoter can effectively enhance the permeate flux in crossflow microfiltration (CFMF) of particulate suspensions. Flux enhancement which is generally attributed to the reduction in cake thickness, however, has still not been clearly understood. In this study, the effects of turbulence promoter on cake properties (thickness, porosity and particle size) were investigated during CFMF of calcium carbonate suspension. It indicates that turbulence promoter has important effects on cake properties that directly affect the cake resistance. The significant reduction in thickness and slight increase in porosity are positive to reduce the cake resistance. The remarkable decrease in particle size is the negative effect due to the increased specific resistance of a cake. As a whole, the overall cake resistance is still diminished by turbulence promoter and therefore permeate flux is improved. The theoretical calculation of cake resistance shows a good consistence with the experimental result. The cake properties in both cases (using a turbulence promoter or not) almost exhibit the similar trends under various operating conditions. Differently, the use of turbulence promoter can greatly alleviate the effects of transmembrane pressure or feed concentration on growth of cake layer and intensify the effects of inlet velocity on diminishing the particle deposition. 相似文献
3.
Quantitative study of the effect of electromagnetic field on scale deposition on nanofiltration membranes via UTDR 总被引:3,自引:0,他引:3
Ultrasonic time-domain reflectometry (UTDR) as an in situ, non-invasive real-time technique has been successfully utilized to quantify membrane fouling and cleaning. This study describes an existing ultrasonic technique for quantitative study of the effect of magnetic fields on CaCO3 scale deposition on the membrane surface during crossflow nanofiltration (NF). The fouling experiments were conducted with CaCO3 solution containing Ca2+ of 1.8 and 3 mmol/L. The experimental electromagnetic field (EMF) was 0.02 T. A commercial NF membrane and a highly sensitive ultrasonic sensor were used in all the experiments. Results show a good relationship between the ultrasonic measurements and the development of CaCO3 scale on the NF membrane surface. An increase in the amplitude of differential signal with operation time results from the deposition of the CaCO3 scale layer. In addition, the movement of the differential signal in the time domain observed is associated with an increase in the thickness of the fouling layer. The UTDR technique is capable of measuring the rate of fouling layer formation under different treatment conditions, i.e. with non-magnetic field (NMF) and EMF. Scale layer of deposited CaCO3 obtained in the experiment with NMF is denser and thicker than that with EMF. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses imply that the magnetic treatment suppresses the formation of calcite crystals and prefers vaterite and aragonite. Furthermore, the ultrasonic technique is sensitive to the different fouling rate between experiments carried out with 1.8 and 3 mmol/L CaCO3 solutions. The thickness of the fouling layer measured by weight measurement is consistent with that obtained by UTDR in real time. The thinner and less dense scale layer is the main reason for the slower flux decline. Overall, independent measurements such as the flux-decline data, SEM analysis and weight measurement corroborate the ultrasonic measurements. 相似文献
4.
Potentially the most effective means of controlling disinfection by-products (DBPs) is to remove precursors before disinfection. To understand relationships between physical properties, treatability and DBP formation, nine natural organic matter (NOM) surrogates were studied. Their DBP formation and removal by coagulation, MIEX® anion exchange resin and two nanofiltration membranes was measured. Whereas treatability of NOM surrogates was explained in terms of their physicochemical properties, the same was not true of DBP formation. Hence it was not possible to selectively remove compounds which generate high amounts of DBPs. Instead, precursor removal strategies based upon empirical DBP formation potential testing are more apt. Under conditions simulating full-scale performance, MIEX® did not offer improved performance over coagulation. A hydrophobic nanofiltration membrane proved successful for removing neutral, hydrophilic surrogates, and hence is also suitable for DBP precursors of this character. 相似文献
5.
Wood ash (3.1, 3.3 or 6.6 tonnes dry weight ha− 1) was used to fertilize two drained and forested peatland sites in southern Sweden. The sites were chosen to represent the Swedish peatlands that are most suitable for ash fertilization, with respect to stand growth response. The fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the forest floor, measured using opaque static chambers, were monitored at both sites during 2004 and 2005 and at one of the sites during the period 1 October 2007-1 October 2008. No significant (p > 0.05) changes in forest floor greenhouse gas exchange were detected. The annual emissions of CO2 from the sites varied between 6.4 and 15.4 tonnes ha− 1, while the CH4 fluxes varied between 1.9 and 12.5 kg ha− 1. The emissions of N2O were negligible. Ash fertilization increased soil pH at a depth of 0-0.05 m by up to 0.9 units (p < 0.01) at one site, 5 years after application, and by 0.4 units (p < 0.05) at the other site, 4 years after application. Over the first 5 years after fertilization, the mean annual tree stand basal area increment was significantly larger (p < 0.05) at the highest ash dose plots compared with control plots (0.64 m2 ha− 1 year− 1 and 0.52 m2 ha− 1 year− 1, respectively). The stand biomass, which was calculated using tree biomass functions, was not significantly affected by the ash treatment. The groundwater levels during the 2008 growing season were lower in the high ash dose plots than in the corresponding control plots (p < 0.05), indicating increased evapotranspiration as a result of increased tree growth. The larger basal area increment and the lowered groundwater levels in the high ash dose plots suggest that fertilization promoted tree growth, while not affecting greenhouse gas emissions. 相似文献
6.
I. Michael 《Water research》2010,44(18):5450-5462
Two different technical approaches based on advanced oxidation processes (AOPs), solar Fenton homogeneous photocatalysis (hv/Fe2+/H2O2) and heterogeneous photocatalysis with titanium dioxide (TiO2) suspensions were studied for the chemical degradation of the fluoroquinolone ofloxacin in secondary treated effluents. A bench-scale solar simulator in combination with an appropriate photochemical batch reactor was used to evaluate and select the optimal oxidation conditions of ofloxacin spiked in secondary treated domestic effluents. The concentration profile of the examined substrate during degradation was determined by UV/Vis spectrophotometry. Mineralization was monitored by measuring the dissolved organic carbon (DOC). The concentrations of Fe2+ and H2O2 were the key factors for the solar Fenton process, while the most important parameter of the heterogeneous photocatalysis was proved to be the catalyst loading. Kinetic analyses indicated that the photodegradation of ofloxacin can be described by a pseudo-first-order reaction. The rate constant (k) for the solar Fenton process was determined at different Fe2+ and H2O2 concentrations whereas the Langmuir-Hinshelwood (LH) kinetic expression was used to assess the kinetics of the heterogeneous photocatalytic process. The conversion of ofloxacin depends on several parameters based on the various experimental conditions, which were investigated. A Daphnia magna bioassay was used to evaluate the potential toxicity of the parent compound and its photo-oxidation by-products in different stages of oxidation. In the present study solar Fenton has been demonstrated to be more effective than the solar TiO2 process, yielding complete degradation of the examined substrate and DOC reduction of about 50% in 30 min of the photocatalytic treatment. 相似文献
7.
Wantana Somcharoenwattana Christoph MenkeDarunporn Kamolpus Dušan Gvozdenac 《Energy and Buildings》2011,43(4):925-934
This paper presents two case studies of performance improvement alternatives. The first one is the 52.5 MWe cogeneration plant at the Suvarnabhumi Airport, and the second is the 9.9 MWe cogeneration plant of the government office building complex. Both plants are located in Bangkok. Performance improvements assume changing system design and operational plans during on-peak and off-peak periods with applying chilled water storage for more flexible operation. Such analysis gives opportunity for improvement of plant efficiency, primary energy saving, emission reduction and economical benefits. In case study 1, the selection of new prime mover results in overall efficiency improvement from 48% to 61%, 24% increase of primary energy saving, and 27% improvement of CO2 emission reduction. Significant amount of primary energy is saved 1451 TJ/a and CO2 emission reduction is 129,271 tCO2/a. The profit is increased to 24.80 Million US$/a and the payback period is 4.77 years. In case study 2, the application of chilled water storage leads to maximum profit of 2.63 Million US$/a. The results show that the selection of plant components should be made very carefully in the design stage, as well as that permanent control and optimization of plant operation in the exploitation phase is essential. Economic aspects of cogeneration plants are more sensitive to changeable input parameters than classical separate heat and power generation since cogeneration plants are more complex in the aspects of process configuration and products costs/values (electricity, steam, hot water, and chilled water). Having in mind the future development of the natural gas distribution network in Thailand, it can be estimated that the potential of power generation in public buildings is around 1.3 GWe. Comparing the Thailand total primary energy supply for commercial buildings, it means reduction of about 9.1%. 相似文献
8.
Junfeng Wu Xianli Wang Haiyan Kang Jingdong Zhang Changzhu Yang 《The International journal of environmental studies》2013,70(4):534-545
In this research, the heterogeneous photoelectron-Fenton-like process using copper ferrite (CuFe2O4) as catalyst was employed to remove p-nitrophenol (PNP). The CuFe2O4 catalyst was prepared by a co-precipitation process and characterised with X-ray fluorescence analysis, X-ray diffraction analysis and BET surface area. The results confirmed that CuFe2O4 was prepared successfully. Under the optimum conditions, namely 0.05?mol?L?1 Na2SO4, the electrical potential of ?0.6?V, pH 3.0 and 0.067?g?L?1 CuFe2O4, 92.8% of 0.1?mM?L?1, the PNP removal efficiency could reach 92.8% for 0.1?mM?L?1 PNP after 180-min treatment. This technology can be applied for the treatment of organic compounds which are not readily biodegradable. 相似文献
9.
A study was performed to determine the effect of pH, alkalinity, natural organic matter (NOM) and dissolved oxygen in the performance of nitrogen and fluorine doped TiO2 (NF-TiO2) for the degradation of hepatotoxin microcystin-LR (MC-LR) in synthetic and natural water under visible light irradiation. The initial degradation rate of MC-LR was fastest under acidic conditions (3.50 ± 0.02 × 10−3 μM min−1 at pH 3.0) and decreased to 2.29 ± 0.07 × 10−3 and 0.54 ± 0.02 × 10−3 μM min−1 at pH 5.7 and 7.1, respectively. Attractive forces between the opposite charged MC-LR and NF-TiO2 are likely responsible for the enhancement in the photocatalytic decomposition of MC-LR resulting from increased interfacial adsorption. For carbonate buffered solutions, the photocatalytic activity of NF-TiO2 was reduced when increasing the carbonate concentration up to 150 mg CaCO3 L−1. The scavenging of radical species by the bicarbonate ion at pH 7.1 is discussed. In the presence of NOM, the degradation rates decreased as pH and initial concentration of the NOM increased. The inhibition was higher with fulvic acid than humic acid under alkaline conditions. Oxygenated solution yields higher NF-TiO2 photocatalytic degradation of MC-LR compared to nitrogen sparged solution at pH 5.7. The involvement of specific reactive oxygen species implicated in the photodegradation is proposed. Finally, no significant degradation is observed with various natural waters spiked with MC-LR under visible light (λ > 420 nm) but high removal was achieved with simulated solar light. This study provides a better understanding of the interactions and photocatalytic processes initiated by NF-TiO2 under visible and solar light. The results indicate solar photocatalytic oxidation is a promising technology for the treatment of water contaminated with cyanotoxins. 相似文献
10.
To understand how to optimize performance of a partially nitrifying plant, the dynamics of Nitrospira and Nitrobacter abundance were studied over a 1 year period using quantitative polymerase chain reaction (qPCR) and their relative contributions to nitrite oxidation assessed including the affects of temperature and dissolved oxygen (DO). Correlation coefficients linking shifts in the community composition of nitrite-oxidizing bacteria (NOB) to operational or environmental variables indicated Nitrospira was significantly and negatively correlated to nitrite concentrations (r = −0.45, P < 0.01) and DO (r = −0.46, P < 0.01), while temperature showed a strong positive correlation (r = 0.59, P < 0.0001). However, the Nitrobacter portion of the total NOB populations showed a positive correlations with DO (r = 0.38, P < 0.01) and hydraulic retention time (HRT) (r = 0.33, P < 0.05), as well as being negatively correlated with temperature (r = −0.49, P < 0.001) suggesting specific niche adaptations within the NOB community. Nitrospira was dominant being better adapted to the low DO and shorter sludge retention times (SRT) of this plant, while Nitrobacter increased in abundance during the winter months, when temperatures were lower and DO concentrations higher. Principal component analysis (PCA) results supported these findings by the close proximity of Nitrospira and temperature biplots of PC1 and PC2 as well as grouping Nitrobacter, NO2−-N, HRT, and DO in the loadings together. The clustering of samples from specific dates also exhibited a strong seasonality. 相似文献
11.
Vogt RD Seip HM Larssen T Zhao D Xiang R Xiao J Luo J Zhao Y 《The Science of the total environment》2006,367(1):394-404
Acid rain may cause soil acidification possibly leading to indirect forest damage. Assessment of acidification potential of atmospheric deposition is problematic where dry and occult deposition is significant. Furthermore, uncertainty is enhanced where a substantial part of the potential acidity is represented by deposition of ammonium (NH(4)(+)) since the degree of assimilation and nitrification is not readily available. Estimates of dry deposition based on deposition velocity are highly uncertain and the models need to be verified or calibrated by field measurements of total deposition. Total deposition may be monitored under the forest canopy. The main problem with this approach is the unknown influence of internal bio-cycling. Moreover, bio-cycling may neutralize much of the acidity by leaching of mainly K(+). When the water percolates down into the rooting zone this K(+) is assimilated again and acidity is regenerated. Most monitoring stations only measure deposition. Lacking measurements of output flux of both NH(4)(+) and NO(3)(-) from the soil one cannot assess current net N transformation rates. Assumptions regarding the fate of ammonium in the soil have strong influence on the estimated acid load. Assuming that all the NH(4)(+) is nitrified may lead to an overestimation of the acidifying potential. In parts of the world where dry deposition and ammonium are important special consideration of these factors must be made when assessing the acidification potential of total atmospheric loading. In China dry and occult deposition is considerable and often greater than wet deposition. Furthermore, the main part of the deposited N is in its reduced state (NH(4)(+)). The IMPACTS project has monitored the water chemistry as it moves through watersheds at 5 sites in China. This paper dwells at two important findings in this study. 1) Potassium leached from the canopy by acid rain is assimilated again upon entering the mineral soil. 2) Nitrification apparently mainly takes place in forest floor (H- and O-) horizon as NH(4)(+) that escapes this horizon is efficiently assimilated in the A-horizon. This suggests that the potential acidification capacity of the deposition may be found in the throughfall and forest floor solution by treating K(+) and NH(4)(+), respectively, as acid cations in a base neutralization capacity (BNC) calculation. 相似文献
12.
Advanced oxidation with ultraviolet light and hydrogen peroxide (UV/H2O2) produces hydroxyl radicals that have the potential to degrade a wide-range of organic micro-pollutants in water. Yet, when this technology is used to reduce target contaminants, natural organic matter can be altered. This study evaluated disinfection by-product (DBP) precursor formation for UV/H2O2 while reducing trace organic contaminants in natural water (>90% for target pharmaceuticals, pesticides and taste and odor producing compounds and 80% atrazine degradation). A year-long UV/H2O2 pilot study was conducted to evaluate DBP precursor formation with varying water quality. The UV pilot reactors were operated to consistently achieve 80% atrazine degradation, allowing comparison of low pressure (LP) and medium pressure (MP) lamp technologies for DBP precursor formation. Two process waters of differing quality were used as pilot influent, i.e., before and after granular activated carbon adsorption. DBP precursors increased under most of the conditions studied. Regulated trihalomethane formation potential increased through the UV/H2O2 reactors from 20 to 118%, depending on temperature and water quality. When Post-GAC water served as reactor influent, less DBPs were produced in comparison to conventionally treated water. Haloacetic acid (HAA5) increased when conventionally treated water served as UV/H2O2 pilot influent, but only increased slightly (MP lamp) when GAC treated water served as pilot influent. No difference in 3-day simulated distribution system DBP concentration was observed between LP and MP UV reactors when 80% atrazine degradation was targeted. 相似文献
13.
Amit Awasthi Susheel Mittal Ravinder Agarwal 《The Science of the total environment》2010,408(20):4440-4445
Variations in pulmonary function tests (PFTs) due to agriculture crop residue burning (ACRB) on children between the age group of 10 to 13 years and the young between 20 to 35 years are studied. The effects of exposure to smoke due to rice-wheat crop residue burning on pulmonary functions like Force Vital Capacity (FVC), Force Expiratory Volume in one second (FEV1), Peak Expiratory Flow (PEF) and Force Expiratory Flow in 25 to 75% of FVC (FEF25-75%) on 40 healthy subjects of rural/agricultural area of Sidhuwal village of Patiala City were investigated for a period from August 2008 to July 2009. Measurements were taken by spirometry according to the American Thoracic Society standards. High volume sampler (HVS) and Anderson Impactor were used to measure the concentration levels of SPM, PM10 and PM2.5 in ambient air of the Sidhuwal village. A significant increase in the concentration levels of SPM, PM10 and PM2.5 was observed due to which PFTs of the subjects showed a significant decrease in their values, more prominently in the case of children. PFTs of young subjects recovered up to some extent after the completion of burning period but the PFT values of children remained significantly lower (p < 0.001) even after the completion of burning episodes. Small size particulate matter (PM2.5 and PM10) affected the PFTs to a large extent in comparison to the large size particulate matter (SPM). The study indicates that ACRB is a serious environmental health hazard and children are more sensitive to air pollution, as ACRB poses some unrecoverable influence on their PFTs. 相似文献
14.
The Skjønhaug constructed wetland (CW) is a free surface water (FSW) wetland polishing chemically treated municipal wastewater in southeastern Norway and consists of three ponds as well as trickling, unsaturated filters with light weight aggregates (LWA). Fluxes of nitrous oxide (N2O) and methane (CH4) have been measured during the autumn, winter and summer from all three ponds as well as from the unsaturated filters. Physicochemical parameters of the water have been measured at the same localities. The large temporal and spatial variation of N2O fluxes was found to cover a range of − 0.49 to 110 mg N2O–N m− 2 day−1, while the fluxes of CH4 was found to cover a range of − 1.2 to 1900 mg m− 2 day− 1. Thus, both emission and consumption occurred. Regarding fluxes of N2O there was a significant difference between the summer, winter and autumn, with the highest emissions occurring during the autumn. The fluxes of CH4 were, on the other hand, not significantly different with regard to seasons. Both the emissions of N2O and CH4 were positively influenced by the amount of total organic carbon (TOC). The measured fluxes of N2O and CH4 are in the same range as those reported from other CWs treating wastewater. There was an approximately equal contribution to the global warming potential from N2O and CH4. 相似文献
15.
M. A. Zulfikar F. I. Suri Rusnadi H. Setiyanto N. Mufti M. Ledyastuti 《The International journal of environmental studies》2016,73(1):79-94
Magnetic Fe3O4 nano-particles were prepared successfully from commonplace sands as a raw material. The nano-particles were synthesized by chemical co-precipitation of high purity iron separated from commonplace sands through acidic leaching. The characterization of the synthesized nano-particles was performed using X-ray diffraction, fourier transform infrared, scanning electron microscopy, transmission electron microscopy, and potential zeta. Finally, the nano-particles were used for adsorption of humic acid (HA) from aqueous solutions using batch adsorption technique. The effects of pH, adsorbent dosage, agitation time, initial HA concentration, and temperatures on HA adsorption were evaluated. The adsorption of HA onto nano-particles followed the Sips isotherm and pseudo-second order kinetics models. Thermodynamic parameters data indicated that the HA adsorption process was non-spontaneous and endothermic under the experimental conditions. The adsorption of HA from peat water (the real sample) using the nano-particles demonstrated that they were an adsorbent with great potential for the removal of HA from peat water. 相似文献
16.
17.
The combination of semiconductor photocatalysis with cross-flow microfiltration accompanied by periodical back-washing was investigated in a pilot plant. The investigation included the testing of membrane materials because the membrane must resist the abrasion and the periodical back-washing. Another objective of this investigation was to assess the potential of two different TiO(2) materials (Hombikat UV100 and P25) for continuous photocatalytic degradation of persistent organic pollutants. The study focused on the long-term stability of the photocatalytic activity of TiO(2) during its continuous application. The combination of photocatalysis and cross-flow microfiltration allowed the separation and reuse of TiO(2) after the photocatalytic degradation of clofibric acid, carbamazepine and iomeprol. The investigations showed that the photocatalytic activity of P25 and Hombikat UV100 was constant during continuous usage over several days. This study indicates the high potential of the combination of heterogeneous photocatalytic oxidation processes with cross-flow microfiltration accompanied by periodical back-washing of the membrane. Thus environmentally relevant pharmaceuticals and X-ray contrast media can be transformed and mineralized in a continuous water treatment process. 相似文献
18.
通过煅烧法制备具有异质结构的g?C3N4?TiO2光催化剂,然后与硅藻土/泥炭藓基调湿材料复合得到自然光驱动光催化调湿材料,并通过小室试验测试其降解甲醛和调湿的效果.采用X射线衍射仪(XRD)、环境扫描电子显微镜(ESEM)、紫外-可见分光光度计(UV?Vis)、傅里叶红外光谱仪(FTIR)和荧光光谱仪(PL)等研究了g?C3N4?TiO2/硅藻土/泥炭藓光催化调湿材料降解甲醛及温湿度调节的机制.结果表明:在尿素与TiO2质量比为5:1,520℃条件下煅烧制备的g?C3N4?TiO2光催化剂降解甲醛的效果最好,具有牢固的异质结,能有效减少光生电子和空穴的重组中心,使TiO2禁带宽变窄;由于光催化-吸附协同效应,NTD?5在自然光照下能够有效地将试验小室内的甲醛浓度和相对湿度分别控制在0.1 mg/m3和60%左右,同时还具有1~2℃的温度调节作用. 相似文献
19.
Guoliang Liu Jie Xuan Soon-Ung Park 《Journal of Wind Engineering & Industrial Aerodynamics》2003,91(9):1155-1162
This paper introduces a new method to process wind profile data of simulated atmospheric boundary layer flows in the wind tunnel so as to obtain the two important wind profile parameters—the surface roughness length z0 and the friction velocity u*. Instead of using the wind speed profile, the turbulent intensity profile of the turbulent surface layer, which is measured with a single probe hot-wire anemometer, is used to calculate the surface roughness length z0. Then, the calculated surface roughness length z0 is substituted into the mean wind speed profile of the constant flux layer to calculate friction velocity u*. From our results this method is better than the simple regression method using the wind speed profile, which has been widely used. 相似文献
20.
Greater Cincinnati Water Works (GCWW) evaluated the efficacy of ultraviolet light/hydrogen peroxide advanced oxidation (UV/H2O2) for reducing trace organic contaminants in natural water with varying water qualities. A year-long UV/H2O2 pilot study was conducted to examine a variety of seasonal and granular activated carbon (GAC) breakthrough conditions. The UV pilot-scale reactors were set to consistently achieve 80% atrazine degradation, allowing comparison of low pressure (LP) and medium pressure (MP) lamp technologies for by-product formation. Because hydroxyl radicals react non-selectively with organic compounds, unintended by-product formation occurred.Total assimilable organic carbon (AOC) concentration increased through the reactors from 14 to 33% on average, depending on water quality. Natural organic matter (NOM) contains the precursors for AOC production, so when post-GAC water (versus conventionally treated water) served as reactor influent, less AOC was produced. No appreciable difference in AOC concentration was observed between LP and MP UV reactors. The Spirillum strain NOX fraction of the AOC increased from 50 to 65% on average, depending on the quality of the water. The increase in this fraction of AOC occurred because oxidation of NOM yielded smaller more assimilable organic compounds such as organic acids that are necessary for NOX growth. The Pseudomonas fluorescens strain P17 AOC concentration increased only when conventionally treated plant water was used as pilot influent. This organism thrives in waters of differing organic energy sources, but does not thrive well in carboxylic acids alone. The CONV water had more overall TOC that could contribute to higher P17 AOC counts.Biofilm coupon studies indicated that biofilms with greater heterotrophic plate counts were observed in the granular activated carbon (GAC) effluent streams receiving UV/H2O2 pre-treatment. Biofilm coupon studies additionally indicated that the effluent stream of the GAC column proceeded by the MP reactor exhibited more viable biofilm than the other GAC effluent streams based on an ATP-bioluminescence method. The increased viability of the biofilm produced by the MP UV reactor is likely a result of the multiple UV wavelengths and higher energy input characteristic of this technology. 相似文献