首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为探讨深埋软岩在不同应力路径下力学性质的差异,对取自丹巴水电站右岸平硐深埋软岩分别进行室内三轴加载试验和不同围压等级、不同卸荷应力水平、不同卸荷速率的恒轴压卸围压试验,并对岩样卸荷破坏面进行微观形貌扫描,分别探讨不同条件下岩样的变形、强度及破坏特征,结果发现:(1)相比三轴加载试验,同等级围压的软岩在卸荷条件下的强度、峰值应变及力学参数都有减小,应力–应变曲线从延性向脆性转换;(2)软岩峰值轴向应变、极限强度、残余强度与卸荷应力水平、卸荷速率均呈正相关性;(3)相比Hoek-Brown经验强度准则,Mohr-Coulomb强度准则能更好地描述软岩强度特性,不同应力路径对抗剪强度参数影响有差异性,卸荷速率对c值的影响更为显著,而卸荷应力水平对?值的影响更为显著;(4)软岩加、卸载条件下都发生剪切破坏,加载时除主裂纹外基本没有衍生微裂纹,卸载时,低卸荷应力水平下岩样破坏后的次生裂纹更发育,且卸荷速率越大岩样破坏程度越强烈;低围压下卸荷破坏时,岩石断面微观形貌演化自由度较高,破坏面粗糙度大。  相似文献   

2.
 根据大理岩加荷破坏与卸荷破坏试验结果,研究大理岩不同应力路径下的破坏特征和能量演化规律。结果表明,常规三轴破坏岩样吸收总能量 高于单轴压缩吸收总能量,峰值强度后常规三轴弹性应变能释放比单轴缓慢,储能极限高于单轴压缩的储能极限。随着卸荷初始围压升高,岩样峰值强度和峰值应变增大,破坏形式由张拉–剪切破坏向剪切破坏过渡,岩样在峰值强度处吸收的总能量 和弹性能 增大,耗散能 却没有明显变化,围压对峰值强度处的 和 无明显影响。卸荷速度增大,岩样峰值强度和峰值应变减小,破坏形式由剪切破坏向张拉–剪切破坏过渡,岩样在峰值点处吸收的总能量 和弹性能 减小,耗散能 却没有明显变化,卸荷速度对 和 无明显影响。加荷与卸荷2种应力路径下,岩样在到达峰值强度时所吸收的总能量和储能极限都与峰值强度呈线性关系。  相似文献   

3.
高应力下岩石非线性强度特性的试验验证   总被引:7,自引:6,他引:1  
 深埋工程岩体开挖后围岩的强度特性表现出明显的非线性特征。基于室内岩石三轴加载及卸荷力学试验成果,对高应力下岩石的非线性强度特性予以验证,并开展高应力下应力路径对强度参数影响规律研究。采用已有的二次抛物线型、双曲线型、幂函数型等型式的包络线来研究强度特征的非线性,结果表明,幂函数型Mohr准则能够作为在高应力加载和卸荷应力路径下的岩石破坏的强度判据。在低围压下(<10 MPa),三轴卸围压破坏强度要小于常规三轴强度;而在高围压下,前者略高于后者。内摩擦角的正切值与等效法向应力的函数关系表明岩样的实际内摩擦角并不是一个不变值,具有幂函数关系的非线性特征,在低应力下卸载破坏内摩擦角要比常规三轴压缩剪切内摩擦角略大,在高应力下则相反;根据Mohr准则中内摩擦角与理论破裂角之间的关系,随着应力增加它们的破裂角均呈非线性衰减并趋向π/4。  相似文献   

4.
锦屏水电站大理岩在高应力条件下的卸荷力学特性研究   总被引:3,自引:1,他引:3  
结合锦屏水电站深埋引水隧洞开挖工程,选取该区域典型大理岩,并以隧洞围岩实际应力环境为基础,开展卸围压破坏试验以及卸围压多级破坏试验.研究成果表明,锦屏大理岩在高应力条件下的卸荷力学性质主要表现为:(1)相同初始应力条件下,岩石达到卸荷破坏所需应力变化量比轴向压缩破坏时小,卸荷更容易导致岩石破坏;(2)岩石卸荷开始后侧向变形明显加快,且表现出显著扩容,如果忽略卸荷前岩样变形,则体积变形几乎按照侧向变形的规律增大;(3)卸围压过程中,泊松比近似按照多项式关系增长.变形模量初始变化不显著,屈服前微量围压减少引起变形模量急剧减小;(4)卸荷条件下抗剪强度参数c值比加载条件下低14%,而φ值比加载条件下高23%.这些结论揭示高应力条件下大理岩的卸荷力学特性,为深埋引水隧洞开挖稳定分析提供可靠依据.  相似文献   

5.
硬质岩石卸荷破坏特性试验研究   总被引:3,自引:3,他引:0  
 对硬质灰岩进行加轴压、卸围压试验,研究卸荷应力路径对其力学性质的影响,结合试验数据分析5种强度准则描述岩石卸荷破坏的适用性。Mohr-Coulomb强度准则和Hoek-Brown强度准则回归效果较差,考虑中间主应力影响的Drucker-Prager强度准则和Mogi-Coulomb强度准则回归效果较好,并且Mogi-Coulomb强度准则回归效果优于Drucker-Prager强度准则,抛物线型强度准则对高围压下的试验结果回归较好。岩石卸荷破坏发生强烈的体积扩容,从描述体积应变变化的角度对岩石卸荷破坏本构模型进行修正,理论模型结果与试验结果吻合较好。  相似文献   

6.
深地矿产资源开发中所要面对的是与浅部巷道有着本质性差异的破裂围岩,破裂围岩的力学特性与完整岩石差异性较大。为探究损伤和破裂岩石的力学行为,提出采用同时卸除轴压与围压的三轴卸荷试验来制备损伤和破裂岩样的试验方法,定义一种基于弹性模量的劣化和考虑塑性变形影响的适用于描述岩石损伤破裂行为的表观损伤破裂变量。采用MTS 815岩石力学试验系统开展峰前、峰值、峰后及残余等8个卸载点的三轴卸荷试验,获得不同损伤破裂度的岩样。通过开展损伤与破裂岩样再承载特性的三轴压缩试验,揭示了损伤和破裂岩样的峰值应力、强度与变形参数、扩容特性与围压及损伤破裂度间的变化规律。试验结果表明,不同损伤破裂度岩样的三轴再加载试验应力–应变曲线仍具有完整岩样常规三轴压缩试验的五阶段,但高损伤破裂度岩样的峰后软化段曲线逐步平缓,表现出一定的塑性变形特性。岩样的峰值应力、强度和变形参数与围压呈正相关,围压对岩样的体积扩容具有显著的抑制作用。随着岩样损伤破裂度的增大,卸荷后再加载岩样的体积应变越易产生扩容现象,岩样的峰值应力、弹性模量随之降低,而广义泊松比随之增大。  相似文献   

7.
锦屏大理岩加、卸载应力路径下力学性质试验研究   总被引:11,自引:7,他引:4  
 地下岩体开挖卸荷应力路径不同于加载应力路径,由此引起的岩体强度、变形特征和破坏机制也不尽相同。针对锦屏二级水电站引水隧洞群围岩赋存于高地应力环境的特点,对其中3# 引水隧洞大理岩开展单轴加、卸载以及三轴压缩和高应力条件下的峰前、峰后卸围压等4种不同应力路径力学试验,得到了的应力–应变全过程曲线、变形破坏特征和主要力学参数的变化规律。试验研究结果表明:(1) 建立在岩样单轴逐级等量加、卸载应力路径下的回滞环面积递减,尤以屈服阶段的卸载对应变影响最大;(2) 不同围压下岩样三轴压缩全过程试验结果表明,当围压达到40 MPa时,应变软化特性转化为理想塑性,可以认为该值为锦屏大理岩脆-延转化点;(3) 对比以上不同应力路径下的强度准则方程以及峰前、峰后黏聚力和内摩擦角,相同初始应力条件下,岩石卸载破坏所需应力变化量比三轴压缩破坏情况下对应的应力变化量小,说明岩石卸载更容易导致破坏;(4) 在变形破坏机制方面,由于峰后比峰前卸围压塑性变形大,岩样塑性变形已吸收较多的弹性变形能,其脆性特性受到抑制,因而不像峰前卸围压破坏具有突发性,岩样由张性破坏过渡到张剪性破坏;(5) 根据大理岩岩样加、卸载破坏断口SEM扫描结果,从细观角度验证了脆性岩石在不同路径下微观剪断裂破坏机制。总之,以上研究结果揭示了锦屏大理岩加、卸载应力路径下力学特性差异,对解决工程实际问题具有重要的参考价值。  相似文献   

8.
基于花岗岩卸荷试验的损伤变形特征及其强度准则   总被引:5,自引:4,他引:1  
 对取自大渡河大岗山水电站的花岗岩开展高应力下2种卸荷方案的力学特性试验,并与同围压下的常规三轴压缩试验结果进行对比分析,研究岩石卸荷过程中的破坏机制、力学强度参数损伤劣化效应及其卸荷破坏的强度特性。研究结果表明:(1) 岩石卸荷过程中向卸荷方向回弹变形强烈、扩容显著,脆性破坏特征明显。(2) 卸荷试验中,开始卸荷点处的变形模量较常规三轴压缩试验已发生一定的损伤劣化,其损伤因子与初始围压近似成线性关系,而该点处的泊松比所表现出的损伤劣化效应却不明显。(3) 卸荷过程中,泊松比随着围压的不断卸除,呈现指数关系增长;变形模量变化平缓,但在岩样卸荷屈服破坏点处陡降。(4) 在高应力卸荷条件下,Mogi-Coulomb强度准则能很好地反映其破坏强度特性。(5) 相比较于常规三轴压缩试验,卸荷时的抗剪强度参数c值减小而j 值增大,其变化量与卸荷方式有关。这些结论揭示高应力条件下花岗岩的卸荷力学特性,为西部水利水电工程的开挖、支护设计及其稳定性分析提供了理论参考。  相似文献   

9.
开展3种不同应力路径下的花岗岩三轴加卸载试验,得到花岗岩在不同加卸载路径下的应力–应变曲线,分析其破坏特征、变形特征及其强度特征。试验结果表明:(1)卸围压过程中岩石环向应变和体积应变与围压在初始阶段呈线性关系,而后呈明显的非线性关系,岩石轴向变形不明显,变形主要表现为环向变形,岩石扩容显著,脆性破坏特征明显。(2)卸荷试验中岩石变形模量随卸荷比的增大而减小,而泊松比随卸荷比的增大而增大,在卸荷初期岩石变形参数劣化不明显,而后呈指数型变化,且岩石加轴压卸围压试验较恒轴压卸围压试验对变形参数的影响更加明显。(3)在高应力卸荷条件下,Mogi-Coulomb强度准则较Mohr-Coulomb强度准则更能反映岩石的卸荷破坏强度特征;相对于常规三轴压缩试验,恒轴压卸围压试验试样黏聚力c降低24.21%,内摩擦角?增大16.71%,而加轴压卸围压试验试样黏聚力c增大10.25%,内摩擦角?减少6.64%,表明在恒轴压卸围压试验中试样抗破坏的主控因素为摩擦力,而在加轴压卸围压试验中为黏聚力。  相似文献   

10.
 岩质边坡中岩桥贯通是导致边坡失稳的重要因素,通过开展不同岩桥长度岩样的常规三轴加荷、三轴卸荷以及三轴加卸荷试验,研究在不同应力路径下岩桥贯通破坏过程中的声发射特征,以及围压和岩桥长度对声发射特征的影响。结果表明:岩石压密阶段与线弹性变形阶段声发射事件较少,塑性阶段声发射事件明显增多,破坏阶段声发射计数率、累计能量以及幅值均达到峰值。声发射特征的明显变化可为紧接的岩样破坏提供预警作用,幅值变化较其他指标更为敏感,因此幅值的监测对于各阶段演化以及破坏预警更有效。本试验中,岩桥试样达到峰值强度后不会立即跌落至残余强度,而是出现2次应力跌落,应力跌落均对应声发射特征达到峰值,2次应力跌落中会出现“平静期”或“峰后回升”现象,其声发射特征与塑性阶段相似,但幅值、计数率与累计能量均大于塑性变形阶段,表明在这一阶段岩样裂纹仍以较快速率扩展,最终导致岩桥贯通破坏。不同应力路径下累计能量由大到小依次为:三轴加卸荷、三轴卸荷和常规三轴。随着岩桥长度与围压的增加,声发射计数率峰值和累计能量逐步增长,破坏程度更加剧烈。  相似文献   

11.
针对黄土工程中的众多平面应变加、卸载问题,利用平面应变改造后的西安理工大学真三轴仪,模拟黄土原位沉积方向及不同初始应力状态,在不同围压下对不同初始应力状态原状黄土进行竖向加载和侧向卸载平面应变试验,揭示不同初始应力状态原状黄土在加、卸载不同应力路径条件下的强度和变形特性。研究结果表明:两种应力路径条件下的应力应变曲线均呈硬化型,加载曲线均高于卸载,加载强度大于卸载强度,但卸载时,土的强度发挥较快。剪切过程中,黄土的侧向变形与竖向变形均呈非线性关系。竖向加载时,土的初始应力状态k值对土强度和变形的影响与固结围压的大小关系紧密;侧向卸载时,k值的增大可以限制侧向变形的发展。竖向加载条件下的体积应变均为剪缩,侧向卸载时均为剪胀。加、卸载条件下p-q平面内的破坏强度线基本一致,近似呈线性关系。侧向卸载条件下土体破坏时的应变远小于竖向加载和常规三轴试验。随着k值的增大,加、卸载应力路径时,黏聚力均线性减小,内摩擦角均线性增大。  相似文献   

12.
 实际工程中,岩体在进入最终应力状态前会经历多级时效荷载的作用。为研究该荷载下裂隙岩体强度、裂纹扩展和变形特征等的变化规律,以通过对砂岩切割并充填水泥砂浆制备的裂隙试样为对象,开展多级时效荷载下的三轴压缩试验。试验结果表明:多级时效荷载下,3种不同裂隙组合试样的强度较常规压缩均有一定程度的降低,陡缓和陡陡裂隙岩体的强度均在起裂强度?ci和扩容应力?cd之间。裂纹扩展特征方面,在相同应力路径下,随着围压的增大,裂隙岩体的破坏呈现更强的剪切性质;缓缓裂隙组合岩体的破坏形式主要受裂隙本身的分布形态所控制,受应力水平和加载路径的影响较小,在试验中均以裂隙岩桥直接贯通发生破坏;相同围压条件下,陡缓和陡陡裂隙组合岩体在时效荷载作用下的破坏较常规压缩下的破坏表现出更强的张拉性质。利用Burgers蠕变损伤模型分析各岩体间的关系,指出岩体间变形的差异主要由裂隙特征导致的初始损伤差别和岩体处于不同强度区间而导致的不同时效损伤引起,为建立岩体时效损伤模型的进一步研究提供了参考。  相似文献   

13.
 深部岩体强度参数的研究相当复杂,与研究尺度、应力状态、应力路径都有关系。以锦屏二级水电站深埋引水隧洞T2b大理岩为研究对象,开展室内标准尺寸岩块岩样、中等尺寸岩石岩样和大尺寸岩体岩样在低–中、中–高、高–极高应力水平下的三轴加、卸载试验,探讨深部岩体强度参数的应力水平效应、应力路径效应和尺寸效应。取得以下成果:(1) 获得室内标准尺寸、中等尺寸和大尺寸大理岩岩样在加、卸载应力路径下低–中、中–高、高–极高应力水平下的10组强度参数;(2) 大理岩抗剪强度参数随应力水平的变化规律基本相同:随着应力水平的提高, 值逐渐减小、c值逐渐增大,但是,不同尺寸和不同应力路径下, 值和c值随围压应力水平的变化幅度并不相同;(3) 相对加载条件,卸载路径下岩体强度参数 值增加,c值减小;(4) 在 50 mm×100 mm至500 mm×500 mm×1 000 mm尺度范围内,大理岩强度参数 值的尺寸效应不明显,而c值的尺寸效应显著。  相似文献   

14.
基于经典弹塑性理论,引入损伤因子,综合考虑岩石在外力作用下的塑性变形与损伤演化,提出一种各向同性弹塑性损伤耦合模型。根据以上理论编制有限元计算程序,较好地描述了岩石在不同加卸载路径中的应力-应变特性。通过程序模拟计算,具体结论如下:在常规路径加载中,岩石的峰值强度与残余强度均随围压的增加而增加。在卸围压路径下,残余应力受初始围压影响较小,但侧向应变与体应变有着明显的增加。轴向荷载的提高使岩石损伤值增加,卸围压过程中最大损伤因子均大于同等初始围压下的常规路径试验。  相似文献   

15.
砂岩卸围压变形过程中渗透特性与声发射试验研究   总被引:3,自引:1,他引:2  
 利用岩石伺服试验系统,对江西红砂岩岩样进行气体渗透三轴试验及声发射监测,研究在常规加载、峰前卸围压和峰后卸围压3种应力路径下,岩样变形破坏过程中的渗透规律和声发射特征。试验结果表明:(1) 随着有效围压的增大,岩石岩样的应力峰值逐渐增大,岩样的应力峰值对有效围压很敏感。(2) 常规加载时,渗透率在岩石屈服前呈现略微下降的趋势,屈服后迅速增长,峰后应变软化阶段有小幅回落;峰前和峰后卸围压时,在卸载之前渗透规律与常规加载时相同,卸载后渗透率均呈急剧增长的趋势,增幅也较大,其中峰前卸围压后渗透率增幅最大。(3) 在相同加载方式下,围压的增大不影响渗透率曲线的发展趋势,只影响渗透率在各阶段量值的大小。(4) 常规加载时,岩石声发射活动在屈服前比较平静,屈服后声发射活动非常活跃,峰后应变软化阶段声发射活动再次趋于平静;峰前卸围压不久后,声发射活动异常活跃、密集,能量数相对值较大并有明显峰值;峰后卸围压过程与常规加载过程中声发射规律相似。(5) 岩样的破坏过程中,随围压增大,脆性减弱、延性增强,在同一围压水平下,峰前卸围压破碎程度最高,脆性最强。(6) 岩石扩容点与渗透率最小值所对应的轴向应变值十分接近,体应变和渗透率随轴向应变的变化趋势对应较好,声发射活动的密集阶段均发生在体积膨胀之后,渗透率、声发射、应力及(体)应变之间存在一定对应关系。  相似文献   

16.
不同加载路径下砂岩破坏模式试验研究   总被引:1,自引:1,他引:0  
 鉴于以往对岩石不同加载路径下破坏模式综合研究的成果较少,采用MTS815刚性伺服试验机,对砂岩岩样分别进行单轴压缩、常规三轴压缩和三轴峰前、峰后卸围压4种不同加载路径下的试验,研究砂岩岩样在不同加载路径下的破坏模式,并对砂岩岩样破坏前、后各能量指标进行计算,采用能量耗散分析的方法探讨不同加载路径下砂岩岩样存在多种破坏模式的原因。研究结果表明,在单轴压缩试验中,砂岩岩样的破坏模式以劈裂破坏为主,单剪破坏为辅。常规三轴压缩和峰后卸围压试验,围压较低时砂岩岩样多发生单一剪切或劈裂破坏;围压较高时,砂岩岩样多发生二者组合破坏。三轴峰前卸围压,围压相对较低时,砂岩岩样多发生剪切与横向剪切组合破坏;围压相对较高时,砂岩岩样多发生劈裂与剪切组合破坏。随着围压的增加,常规三轴压缩试验中,砂岩岩样更易发生剪切破坏;而对于三轴峰前、峰后卸围压试验,砂岩岩样发生剪切破坏呈先增加后降低的趋势。不同加载路径下岩样破坏模式与岩样破坏前、后能量指标数值存在一定的对应关系,各能量指标数值较小时,岩样多发生单一破坏模式,且破坏后形成的块体相对较完整;各能量指标数值较大时,岩样多发生组合破坏模式,且破坏后形成的块体相对较破碎。  相似文献   

17.
应力路径不同,岩石变形和破坏过程中伴随的声发射特征也不同,通过不同路径大理岩加、卸荷试验,结合分形维数原理,探讨声发射破坏前兆随应力路径的变化规律。试验结果表明:1岩样破坏处的声发射计数率和破坏前的累计计数率增长率由大变小的应力路径为加轴压卸围压、恒轴压卸围压、单轴、常规三轴路径。2常规三轴路径下岩样临近破坏时,声发射事件计数率存在明显的"低声发射期",围压越大,声发射前兆"低声发射期"越明显;同时累计振铃计数率增长速率降低的拐点出现后很短时间,岩样也会发生破坏。3低围压下恒轴压、卸围压路径岩样破坏时累计振铃计数率的增长速率近似为切线。加轴压、卸围压岩样破坏前一段相近计数率后存在声发射计数率的"平静期",围压增加,"平静期"持续时间增加,岩样破坏产生的计数率越高。4在低围压应力环境下应力比0.8、高围压应力环境下时间比0.4时声发射分维数降低的特征可以作为岩样的破坏前兆分析。  相似文献   

18.
基于能量原理的卸围压试验与岩爆判据研究   总被引:11,自引:7,他引:4  
 岩爆是高地应力区地下工程开挖卸荷产生的地质灾害现象。按照地下硐室开挖过程中围岩的实际受力状态,开展脆性花岗岩常规三轴、不同控制方式、不同卸载速率条件下峰前、峰后卸围压试验,研究岩石破坏的全过程,从能量的原理探讨岩石破坏过程能量积聚–释放的全过程,研究岩石的变形破坏特征、能量集聚–耗散–释放特征和基于能量原理的岩爆判据。试验结果表明:无论是峰前还是峰后卸围压,岩样都表现脆性破坏的特征,峰前卸围压时岩样破坏表现出的脆性比峰后卸围压更为强烈;且无论是加载还是不同控制方式卸围压条件下,岩石在破坏前所能够储存的最大应变能受围压和卸载速率的控制。从能量的观点和工程应用的角度出发,提出一种新的能量判别指标:岩体实际储存能量与极限能量之比为U/U0,该指标真实合理地反映地下工程开挖卸荷过程中围岩的能量变化过程,围岩能量的积聚程度以及岩爆的发生程度,通过数值仿真计算可以更合理地定量预测高应力下地下工程开挖过程中岩爆发生的强度和位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号