首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The St. Lawrence River near Cornwall, Ontario was designated an Area of Concern by the International Joint Commission in 1985. Sediments from this area have historically been contaminated with mercury (Hg), and although concentrations have decreased since the 1970s, they still remain high. Nine sediment cores were collected from three sites within the Area of Concern in 2004/05 to determine the variability in historical profiles of Hg deposition to the river. Sediment and pore water phases were analyzed for total mercury (THg) and methyl mercury (MeHg) and cores were analyzed for 210Pb to determine chronologies of sedimentation at these sites. Mercury diffusion rates in pore waters within the sediment column were determined to be very low (between 0 and 2.15 ng cm− 2 year− 1, n = 3) compared to the recent Hg sedimentation rates at these sites (183 ± 30 ng cm− 2 year− 1 SE, n = 9) determined by multiplying surface Hg concentrations with 210Pb-derived sedimentation rates. These results indicate that Hg profiles in these cores accurately depict historical releases of Hg to the river bed. The influence of federal regulations in the early 1970s to restrict Hg emissions to the river was apparent in these dated sediment cores, as were the closures of several local industries in the mid 1990s. Mercury accumulation rates prior to 1970 were 60 times higher than those occurring after 1995. Methyl mercury showed surface enrichment in most of these sediment cores providing evidence that mercury methylation occurred most rapidly near the sediment surface.  相似文献   

2.
Sediment cores were collected from two shallow sites in the Venice Lagoon, Italy, in order to study the lability of organic matter and the methylation rate of inorganic Hg(II). Measurements were made of concentrations of total Hg and monomethylmercury (MMHg), Hg(II) methylation rates, concentrations of total organic carbon and total nitrogen in the sediments, and dissolved sulfate, sulfide, and alkalinity in sedimentary pore waters. A positive linear relationship was detected between the specific Hg(II) methylation rate constant and the fraction of total Hg comprised of MMHg (%MMHg/Hg), indicating that short-term Hg(II) methylation rate reflects a long-term accumulation of MMHg in sediment. In addition, the %MMHg/Hg and specific Hg(II) methylation rate constant in sediment increased with decreasing ratios of total organic carbon to total nitrogen (C/N), whereas concentrations of dissolved sulfate, sulfide, and alkalinity in pore water remained constant. This result suggests that the Hg(II) methylation rate was affected by lability of organic matter. In particular, surface sediments, which contained large fractions of fresh algal organic material (C/N = 5.8-7.8), showed higher Hg(II) methylation rates than did deeper sediments (C/N > 10). Our results indicate that the C/N ratio can be used as a proxy for the lability of organic matter that influences Hg(II) methylation rate in sulfate-rich marine sediments.  相似文献   

3.
Baihua Reservoir in Guizhou Province, China, experienced serious Hg contamination from Guizhou Organic Chemical Plant (GOCP) between 1971 and 1997. However, the biogeochemical cycling of Hg in this reservoir is not well studied. Sediment cores were collected in fall 2002, spring 2003 and in spring and fall 2004. THg and MeHg concentrations in all sediment profiles ranged from 0.26 to 38.9 mg/kg and from 0.5 to 27.5 μg/kg (d.w.), respectively. The distribution of THg in sediment cores was characterized by a few peaks, which may correspond to the Hg-containing wastewater discharge history of the GOCP. The average THg concentrations in sediments cores decreased from upstream to downstream due to the deposition of particulate Hg, which is the major form of Hg in water. THg and MeHg concentrations in pore water varied from 6.1 to 5860 ng/L and from 0.3 to 15.4 ng/L, respectively, which were significantly higher than levels in the overlying water column. Average diffusive flux from sediment to water is 1642 and 36 ng/m2/day for THg and MeHg. The spatial distribution of THg in pore water from upstream to downstream showed the same trend as the sediment, but MeHg in pore water did not show a declining pattern with distance from the GOCP. These results suggested that sediments experienced serious contamination of Hg, and the contaminated sediment is an important Hg contamination source to the overlying water.  相似文献   

4.
This study quantifies historic and current mercury contamination in New Haven Harbor (New Haven, Connecticut, USA) through the analysis of sediment cores. The mercury concentration measured in surface sediment ranged from 320 to 1640 μg kg− 1 with an average of 530 μg kg− 1. The harbor is relatively small in area (6.6 km2) but displays a large range in concentrations, illustrating the important methodological issue that a large number of samples may be necessary to capture the variability in even a small area. Depth profiles of mercury reflect sedimentation over a range of 20 to 200 years and indicate a complex history of contamination. Mercury depth profiles were compared with lead, copper, cadmium, and silver concentrations and the metals generally covary. This trend indicates that the sources of mercury and heavy metals are linked and that regionally specific sources dominate the historic input of metals rather than large-scale atmospheric deposition patterns. Results also show there are large differences in absolute concentrations of metals among sites in the harbor. Differences in the abundance of Fe-rich, fine-grained sediment likely control the level of metals in various parts of the harbor. Proximity to current sources and the long, diverse industrial history of the harbor also influence the distribution pattern. All of the cores can be modeled as mixing between pre-industrial sediments and either one or two pollution endmembers. This study demonstrates the importance of riverine sources in the mass balance of mercury delivered to coastal areas and of watershed management to preserve coastal ecosystems.  相似文献   

5.
Mercury distribution and speciation in Lake Balaton, Hungary   总被引:6,自引:0,他引:6  
The distribution and speciation of mercury in air, rain, lake water, sediment, and zooplankton in Lake Balaton (Hungary) were investigated between 1999 and 2002. In air, total gaseous mercury (TGM) ranged from 0.4 to 5.9 ng m(-3) and particulate phase mercury (PPM) from 0.01 to 0.39 ng m(-3). Higher concentrations of both TGM and PPM occurred during daytime. Higher concentrations of PPM occurred in winter. In rain and snow, total mercury ranged from 10.8 to 36.7 ng L(-1) in summer but levels up to 191 ng L(-1) in winter. Monomethylmercury (MMHg) concentrations ranged from 0.09 to 1.26 ng L(-1) and showed no seasonal variations. Total Hg in the unfiltered lake water varied spatially, with concentrations ranging from 1.4 to 6.5 ng L(-1). Approximately 70% of the total Hg is dissolved. MMHg levels ranged from 0.08 to 0.44 ng L(-1) as total and from 0.05 to 0.37 ng L(-1) in the dissolved form. Lower Hg concentrations in the water column occurred in winter. In suspended particulate matter and in sediment, total mercury ranged from 9 to 160 ng g(-1) dw, and MMHg ranged from 0.07 to 0.84 ng g(-1) dw. In zooplankton, an average mercury level of 31.0+/-6.8 ng g(-1) dw occurred, with MMHg accounting for approximately 17%. In sediments, suspended-matter- and zooplankton-high Hg and MMHg levels occurred at the mouth of the River Zala, but, in the lake, higher concentrations occurred on the Northern side, and an increasing trend from north-west to north-east was observed. In general, regarding Hg, Lake Balaton can be considered as a relatively uncontaminated site. The high-pH and well-oxygenated water as well as the low organic matter content of the sediment does not favour the methylation of Hg. In addition, bioconcentration and bioaccumulation factors are relatively low compared to other aquatic systems.  相似文献   

6.
Decommissioned agricultural salt ponds within south San Francisco Bay, California, are in the process of being converted to habitat for the benefit of wildlife as well as water management needs and recreation. Little is known of baseline levels of contaminants in these ponds, particularly mercury (Hg), which has a well established legacy in the Bay. In this study we described spatial and short-term temporal variations in sediment Hg species concentrations within and among the Alviso and Eden Landing salt ponds in the southern region of San Francisco Bay. We determined total Hg (Hgt) and methylmercury (MeHg) in the top 5 cm of sediment of most ponds in order to establish baseline conditions prior to restoration, sediment Hgt concentrations in a subset of these ponds after commencement of restoration, and variation in MeHg concentrations relative to sediment Hgt, pH, and total Fe concentrations and water depth and salinity in the subset of Alviso ponds. Inter-pond differences were greatest within the Alviso pond complex, where sediment Hgt concentrations averaged (arithmetic mean) 0.74 μg/g pre and 1.03 μg/g post-restoration activity compared to 0.11 μg/g pre and post at Eden Landing ponds. Sediment Hgt levels at Alviso were fairly stable temporally and spatially, whereas MeHg levels were variable relative to restoration activities across time and space. Mean (arithmetic) sediment MeHg concentrations increased (2.58 to 3.03 ng/g) in Alviso and decreased (2.20 to 1.03 ng/g) in Eden Landing restoration ponds during the study. Differences in MeHg levels were related to water depth and pH, but these relationships were not consistent between years or among ponds and were viewed with caution. Factors affecting MeHg levels in these ponds (and in general) are highly complex and require in-depth study to understand.  相似文献   

7.
Estimates of mercury (Hg) loadings to the Arctic Ocean from circumpolar rivers have not considered biogeochemical changes that occur when river water is temporarily stored in large deltas (delta effect). There are also few data describing Hg changes across the freshwater-saltwater transition zone (FSTZ) of these rivers. We assessed temporal changes in unfiltered total mercury (THg) and methylmercury (MeHg) concentrations during open-water 2004 in the Mackenzie River upstream of the Mackenzie River delta, and in 6 floodplain lakes across an elevation gradient. These data were used to calculate Hg fluxes from the Mackenzie River and to evaluate a delta effect on Hg using an estimate of delta river water storage and a mixing analysis. Mean THg concentrations were highest in river water (9.17 ± 5.51 ng/L) and decreased up the lake elevation gradient. Mean MeHg concentrations were highest in lakes periodically connected to the river (0.213 ± 0.122 ng/L) and MeHg concentrations in elevated lakes showed a mid-summer peak. Results from the mixing analysis showed that the delta effect may be large enough to affect Hg loadings to the Arctic Ocean. THg concentrations exiting the delta (10.2 ng/L) were 16% lower than those entering (12.1 ng/L), whereas MeHg showed little change. We calculated 2.5-month (open-water) THg and MeHg fluxes from the Mackenzie River of 1208 and 8.4 kg. These fluxes are similar in magnitude to previous annual estimates in the arctic literature suggesting that previously published annual Hg fluxes from the Mackenzie River may be large underestimates. We also assessed changes in Mackenzie River water THg and MeHg concentrations as it crossed the FSTZ during an open-water cruise. THg decreased non-conservatively across the estuary from 3.8-0.6 ng/L, possibly due to mixing and particle settling. MeHg concentrations were variable and near detection. Our results show that the Mackenzie River estuary is a dynamic environment and may have important controls on Hg delivered to the Arctic Ocean.  相似文献   

8.
Mercury (Hg) speciation and partitioning have been investigated in a river-reservoir system impacted by the Almadén mining activities, the world's largest Hg district. This study is the first to simultaneously investigate Hg dynamics from above the mining district and into the La Serena Reservoir (3219 Hm3), being the third largest reservoir in Europe and the largest in Spain.Water, sediment and biota were sampled at different seasons during a 2-year study from the Valdeazogues River, which flows east-west from the mining District, to La Serena Reservoir. Simultaneously, a comprehensive study was undertaken to determine the influence of some major physico-chemical parameters that potentially influence the fate of Hg within the watershed.Concentrations of dissolved Hg in water were below 0.14 µg/L, whereas particulate Hg ranged from 0.1 to 87 µg/g, with significant seasonal variation. Total Hg concentrations varied from 7 to 74 µg/g in sediment from the Valdeazogues River, while in sediments from La Serena Reservoir were below 2 µg/g. On the other hand, methyl-Hg reached concentrations up to 0.3 ng/L in water and 6 ng/g in sediment from La Serena Reservoir, whereas maximum concentrations in Valdeazogues River were 5 ng/L and 880 ng/g in water and sediment, respectively. The distribution of Hg species in the Valdeazogues River-La Serena Reservoir system indicated a source of Hg from the mine waste distributed along the river. Total Hg in water was strongly correlated with total dissolved solids and chlorophyll a concentrations, whereas organic carbon and Fe concentrations seem to play a role in methylation of inorganic Hg in sediment. Total Hg concentrations were low in fish from Valdeazogues River (0.8-8.6 ng/g, wet weight) and bivalves from La Serena Reservoir (10-110 ng/g, wet weight), but most was present as methyl-Hg.  相似文献   

9.
The waterfront of historic Kingston, Ontario (pop: 113,000) has been used for industrial activities for over a century. More than 40 industries have existed within the inner harbour, and while many of these industries are no longer present, the properties that they operated on remain as potential sources of persistent contamination to the present day, including mercury. To assess the extent and distribution of total mercury (THg) contamination, 21 sediment cores as well as pore water samples were collected within the inner harbour of Kingston. The spatial distribution of THg in the surface sediment is not homogenous; with concentrations in the surface sediment along the southwestern shoreline, adjacent to the former industrial properties, are significantly greater (p < 0.01) than the rest of the inner harbour, and were above the Federal severe effect limit (> 2000 ug/kg;) guideline for sediment. MeHg was detected in some sediment cores, and was found to have a significant, positive correlation with [THg] in the surface sediment (0-5 cm). THg was not found in storm sewer discharges, but was detected in terrestrial soil near the Kingston Rowing Club at a concentration of more than 4000 ug/kg. Significant [THg] was detected in runoff draining from contaminated shoreline soils, indicating that erosion from terrestrial sources may be an ongoing source of Hg to the sediment. It can be concluded that there is an increased risk over time to surrounding ecosystems where properties with historical contamination are not remediated until they are developed.  相似文献   

10.
Hexabromocyclododecane (HBCD) is the third most used brominated flame retardant globally, and has been found widely distributed in the environment. The present study reports concentrations and spatial patterns of α, β and γ-HBCD in a contaminated Norwegian fjord. Intertidal surface sediment and selected species from the marine food web were sampled at five locations in increasing distance from a known point source of HBCD. All sediment and biota samples were analyzed for the three HBCD diastereomers by liquid chromatography and mass spectrometry (LC/MS). The results demonstrated a HBCD gradient with decreasing concentrations at increasing distance from the point source in sediment and sedentary species, but less so in the species with large feeding ranges. Mean concentrations of ΣHBCD at the closest/most remote locations relative to the point source were 9000/300 ng g− 1 TOC in sediment and 150/90 ng g− 1 lw in the species with largest feeding range (great black-backed gull). The HBCD diastereomer patterns were similar for each of the matrices (sediment, organisms) independent of distance from the source, indicating no difference in environmental partitioning between the diastereomers. However, the concentration ratio of diastereomers in each matrix ranged from 3:1:10 (α:β:γ) in the sediments to 55:1 (α:γ) in the highest trophic level species, suggesting diastereomer-specific bioaccumulation in the organisms.  相似文献   

11.
Five sediment cores from Kuwait Bay were taken in order to study the present distribution of total mercury (THg) in the vicinity of the Salt and Chlorine Plant (SCP) operated in the 1963–1985 period. The THg concentration profiles were also determined in four sediment cores from the northern part of Kuwait Bay. Additionally, average THg contents were measured in the surface layer (40 cm) of five sediment samples in the entrance of Kuwait Bay, in order to compare the present Hg levels in other parts of this reservoir. The cores were dated by 210Pb method. The observed contents of mercury were in the range of 35 to 2000 µg/kg dry weight (ppb). Thus, the bottom sediments in these three areas of Kuwait Bay are still contaminated by Hg. In a few cases, the depth concentration profiles of THg were disturbed as an effect of partial mixing of the sediment layers, especially in the shallow, northern part of Kuwait Bay. This suggestion was supported by the results of additional measurements of the anthropogenic 137Cs profiles in the same cores.  相似文献   

12.
Total mercury (HgT) and monomethylmercury (MMHg) were investigated in a tropical head watershed (1 km2) of French Guiana. The watershed includes a pristine area on the hill slopes and a former gold mined flat in the bottomland. Concentrations of dissolved and particulate HgT and MMHg were measured in rain, throughfall, soil water and at three points along the stream. Samples were taken in-between and during 14 storm events at the beginning and middle of the 2005 and 2006 rainy seasons. Dissolved and particulate HgT concentrations in the stream slightly increased downstream, while dissolved and particulate MMHg concentrations were low at the pristine sub-watershed outlet (median = 0.006 ng L−1 and 1.84 ng g−1, respectively) and sharply increased at the gold mined flat outlet (median = 0.056 ng L−1 and 6.80 ng g−1, respectively). Oxisols, which are dominant in the pristine area act as a sink of HgT and MMHg from rain and throughfall inputs. Hydromorphic soils in the flat are strongly contaminated with Hg (including Hg0 droplets) and their structure has been disturbed by former gold-mining processes, leading to multiple stagnant water areas where biogeochemical conditions are favorable for methylation. In the former gold mined flat high dissolved MMHg concentrations (up to 0.8 ng L−1) were measured in puddles or suboxic soil pore waters, whereas high dissolved HgT concentrations were found in lower Eh conditions. Iron-reducing bacteria were suggested as the main methylators since highest concentrations for dissolved MMHg were associated with high dissolved ferrous iron concentrations. The connection between saturated areas and stagnant waters with the hydrographic network during rain events leads to the export of dissolved MMHg and HgT in stream waters, especially at the beginning of the rainy season. As both legal and illegal gold-mining continues to expand in French Guiana, an increase in dissolved and particulate MMHg emissions in the hydrographic network is expected. This will enhance MMHg bio-amplification and present a threat to local populations, whose diet relies mainly on fish.  相似文献   

13.
Very high levels of mercury (Hg) have recently been reported in marine mammals and other higher trophic-level biota in the Mackenzie Delta and Beaufort Sea of the western Arctic Ocean. To quantify the input of Hg (particulate, dissolved and methylated) by the Mackenzie River as a potential source for Hg in the ecosystem, surface water and sediment samples were taken from 79 sites in the lower Mackenzie Basin during three consecutive summers (2003-2005) and analyzed for Hg and methylmercury (MeHg). Intensive studies were also carried out in the Mackenzie Delta during the freshets of 2004 and 2005. Large seasonal and annual variations were found in Hg concentrations in the river, coincident with the variations in water discharge. Increased discharges during spring freshet and during the summers of 2003 and 2005 compared to 2004 were mirrored by higher Hg concentrations. The correlation between Hg concentration and riverflow suggests additional Hg sources during periods of high water, potentially from increased surface inundation and increased bank erosion. The increase in the Hg concentration with increasing water discharge amplifies the annual Hg and MeHg fluxes during high water level years. For the period 2003-2005, the Hg and MeHg fluxes from the Mackenzie River to the Beaufort Sea averaged 2.2 tonnes/yr and 15 kg/yr, respectively, the largest known Hg source to the Beaufort Sea. More than half of the mercury flux occurs during the short spring freshet season which coincides with the period of rapid growth of marine biota. Consequently, the Mackenzie River input potentially provides the major mercury source to marine mammals of the Beaufort Sea. The Hg and MeHg fluxes from the Mackenzie River are expected to further increase with the projected climate warming in the Mackenzie Basin.  相似文献   

14.
The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate-fumarate media. This NOM did not affect MMHg production even under very low Hg:SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg-NOM to growing cultures 24 h before sampling (late addition) resulted in ~ 2× greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid- and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to ~ 3× more MMHg, indicating the potential importance of growth phase in studies of MMHg production.  相似文献   

15.
Carbon dioxide (CO2), carbon monoxide (CO), and mercury (Hg) emissions were quantified for two eastern Kentucky coal-seam fires, the Truman Shepherd fire in Floyd County and the Ruth Mullins fire in Perry County. This study is one of the first to estimate gas emissions from coal fires using field measurements at gas vents. The Truman Shepherd fire emissions are nearly 1400 t CO2/yr and 16 kg Hg/yr resulting from a coal combustion rate of 450-550 t/yr. The sum of CO2 emissions from seven vents at the Ruth Mullins fire is 726 ± 72 t/yr, suggesting that the fire is consuming about 250-280 t coal/yr. Total Ruth Mullins fire CO and Hg emissions are estimated at 21 ± 1.8 t/yr and > 840 ± 170 g/yr, respectively. The CO2 emissions are environmentally significant, but low compared to coal-fired power plants; for example, 3.9 × 106 t CO2/yr for a 514-MW boiler in Kentucky. Using simple calculations, CO2 and Hg emissions from coal-fires in the U.S. are estimated at 1.4 × 107-2.9 × 108 t/yr and 0.58-11.5 t/yr, respectively. This initial work indicates that coal fires may be an important source of CO2, CO, Hg and other atmospheric constituents.  相似文献   

16.
The Red River (China/Vietnam, A = 155,000 km²) is a typical humid tropics river originating from the mountainous area of Yunnan Province in China. Based on information on daily discharge (Q) and suspended particulate matter (SPM) concentration between 1960-2008 for the SonTay gauging station (outlet of the River and entry to the Delta) provided by the National Institute IMHE-MONRE, the mean annual SPM flux was estimated at 90 Mt/yr, corresponding to a sediment yield of 600 t/km²/yr. The temporal variability of annual SPM fluxes (ranging from 24 to 200 Mt/yr) is strongly related to the interannual hydrological conditions. However, some years of high water flow were not associated with high sediment fluxes, especially after 1989 when the HoaBinh dam came into operation. Therefore, the median discharge pre- (3389 m3/s) and post 1989 (3495 m3/s) are similar indicating there was little or no change between both periods. Sediment rating curves (power law-type; SPM = aQb) were fitted for both periods (1960-1989; 1990-2008). The analysis of the pre- and post-1989 sediment rating parameters (a, b) suggests a downshift of b-parameter values after 1989, attributed to a decrease of the sediment supply due to the commissioning of the HoaBinh dam. A single sediment rating curve derived from 1960-1989 data was used to simulate the annual variability of former sediment delivery, generating excellent cumulative flux estimates (error ~ 1%). In contrast, applying the same rating curve to the 1990-2008 data resulted in systematic and substantial (up to 109%) overestimation. This suggests that the HoaBinh dam reduces annual SPM delivery to the delta by half, implying important metal/metalloid storage behind the HoaBinh dam.  相似文献   

17.
Mercury-contaminated effluent was discharged into Minamata Bay from a chemical plant over a 20-year period until 1965 (from 1958 to 1959, effluent was discharged into Minamata River), causing Minamata disease. In an effort to characterize the extent of the contamination in the Yatsushiro Sea, the vertical and horizontal distributions of mercury in sediment were investigated. Sediment was sampled at 62 locations in the southern part of the sea from 4 to 6 March 1996. In the lower layers of the long cores of sediment, the total amount of mercury was at a relatively uniform low concentration. We interpret these low values to represent the background concentration absent of anthropogenic influence. The background value thus estimated for the Yatsushiro Sea was 0.059 +/- 0.013 mg kg(-1) (mean +/- S.D., n = 51). The highest concentration in each sample ranged from 0.086 to 3.46 mg kg(-1) (mean, 0.57 mg kg(-1)). The higher values were obtained at stations near Minamata Bay and the Minamata River (the sources of the pollution). Concentrations decreased with distance from the source. An inspection of the vertical profiles of mercury concentration in cores suggested that the deposited mercury had not been fixed in sediment but had been transported, despite 30 years having past since the last discharge of contaminated effluent. At nine stations, extractable inorganic and organic mercury concentrations were determined differentially. Inorganic mercury is the predominant species in sediment and organic mercury comprising approximately 1% of the total.  相似文献   

18.
The concentrations of total mercury (THg) and methylmercury (MeHg) in the sediments of Lake Shihwa, an artificial salt lake in Korea located near two large industrial complexes, were determined to investigate the state of Hg contamination in the lake sediments and the effect of local Hg source. THg and MeHg concentrations in the sediments, monitored for 2 years, ranged from 0.02 to 0.28 µg g− 1 and ≤ 0.026 to 0.67 ng g− 1, respectively. The overall distribution of Hg in lake sediments showed higher values near industrial complexes and in the central part of the lake. However, the correlations between Hg and environmental factors, such as organic material (OM) content, and acid volatile sulfide (AVS), were weak and did not clearly explain the variation in Hg distribution. The spatial distribution of sediment Hg and monthly precipitation data during the sampling period showed that the amount of runoff following rain events and water gate operation may be additional important factors regulating Hg level and distribution in lake sediments. The levels of THg in fish species in this lake ranged from 9.8 to 35 ng g− 1, suggesting that the bioavailability of sediment Hg in the lake may be low. Although the THg concentrations in Lake Shihwa sediment were lower than those in other foreign study sites, they were higher than in neighboring coastal regions, and are constantly increasing. This result indicates that the nearby industrial complexes may be the major source of Hg found in the sediments of Lake Shihwa.  相似文献   

19.
Worldwide, approximately 30-50 millions of people are living in small scale gold mining areas and are primarily burdened by mercury vapour.In the frame of our study, 306 mercury (Hg) vapour burdened adults, working and/ or living in two small scale gold mining areas in Zimbabwe and Tanzania and 58 volunteers from near-by unburdened communities were medically investigated. In addition, blood, urine and hair samples from each participant were analyzed for mercury. Altogether, 26 anamnestic and 24 clinical signs and symptoms, which may be caused by Hg vapour, were evaluated. Multivariate analysis was performed to investigate the influence of the mercury concentration in the bio-monitors on the evaluated anamnestic and clinical signs and symptoms taking into account age, gender, health status, alcohol consumption, use of pesticides and gasoline sniffing.Out of the resulting correlations between concentration and effect, ROC-curves were calculated to determine best estimates of the cut-off-values in the bio monitors. For the parameters ataxia of gait and sadness cut-off-values of 4.7 and 3.6 µg Hg/g crea in urine were calculated. These values were converted to a rounded LOAEL of 3.5 µg Hg vapour/m3 air. In analogy to the US EPA Report (U.S. Environmental Protection Agency 1997) and the European Position Paper (Pirrone et al. 2001), uncertainty factors of 30 and 50 were applied, resulting in a proposed reference concentration (RfC) in ambient air of 0.1 µg Hg vapour/m3 and 0.07 µg Hg vapour/m3, respectively.  相似文献   

20.
Concerns over the fate and bioaccumulation of mercury (Hg) inputs to Onondaga Lake, a hypereutrophic lake in central New York, prompted an investigation into the concentrations and fluxes of Hg discharge from the Onondaga County Metropolitan Wastewater Treatment Plant (METRO WWTP). Discharge of methyl Hg (MeHg) is of concern because it is the form of Hg that readily bioaccumulates along the aquatic food chain. This study incorporated clean protocols for sampling and Hg analysis to evaluate: seasonal patterns in the concentrations of total Hg (THg) and MeHg in the WWTP unit processes; the production of MeHg within the unit processes of the WWTP; the overall fate of THg and MeHg within the WWTP; and the relative impact of the Hg discharged from the WWTP to Onondaga Lake. Concentrations of THg (range: 80-860 ng/L) and MeHg (0.7-17 ng/L) in raw sewage were highly variable, with higher concentrations observed in the summer months. The dynamics of THg though the WWTP were correlated with total suspended solids (TSS). As a result, the majority of the THg removal (55%) occurred during primary treatment. Overall, about 92% of the THg entering the plant was removed as sludge, with volatilization likely a minor component of the overall Hg budget. The transformation of MeHg through the plant differed from THg in that MeHg was not correlated with TSS, and displayed strong seasonal differences between winter (November to April) and summer (May-October) months. During the summer months, substantial net methylation occurred in the activated sludge secondary treatment, resulting in higher MeHg concentrations in secondary effluent. Net demethylation was the dominant mechanism during tertiary treatment, resulting in removal of substantial MeHg from the secondary effluent. The overall MeHg removal efficiency through the plant was about 70% with more efficient removal during summer months. Sediment trap collections made below the epilimnion of Onondaga Lake indicated average deposition rates of 12 μg/m2-day for THg and 0.33 μg/m2-day for MeHg. These deposition rates are more than an order of magnitude higher than the thermocline area normalized external loads from METRO effluent (0.85 μg/m2-day for THg, 0.05 μg/m2-day for MeHg). Our findings indicate that the impact of the discharge from METRO is relatively small, contributing about 10-15% of Hg to the total gross Hg input to the hypolimnion of the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号