首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
地铁车站深基坑地下连续墙变形监测   总被引:1,自引:0,他引:1  
目前软土地区地铁车站深基坑多采用地下连续墙作为围护结构,通过对上海轨道交通10号线同济大学站基坑地下连续墙现场监测结果的分析,研究了基坑开挖深度与地下连续墙侧移及最大相对侧移的关系,同时给出了地下连续墙最大侧移及最大侧移位置随开挖时间的变化规律,并对不同测点的侧移结果进行分析比较。结果表明:长条形地铁车站深基坑虽然是对称结构,但是对基坑外侧土体进行加固一侧的地下连续墙的变形远远小于未经加固一侧的变形,所以,在对基坑设计时一定要考虑土体加固的影响。  相似文献   

2.
以上海竹园2-16-1地块项目深基坑工程为背景,介绍了邻近地铁的软土深基坑变形控制方法及其效果。根据基坑工程的特点,设计时采取了多种地铁保护专项技术措施,包括基坑分区实施方案、支护体系、钢支撑轴力补偿系统、坑内被动区加固、承压水控制措施等。结果表明:基坑各分区地下连续墙最大侧向位移小于上海软土地区基坑地下连续墙最大侧移的统计平均值0.42%H(H为基坑最大开挖深度),特别是靠近地铁侧的地下连续墙最大侧向位移接近上海软土地区基坑地下墙最大侧移的统计下限值0.1%H; 地铁侧坑外承压水位总体保持在比较平稳的水平,最大水位变化仅为0.72 m; 邻近的地铁隧道上行线和下行线的累计最大沉降量分别为8.2 mm和5.1 mm,均小于地铁下沉量允许值(20 mm),且隧道曲率半径满足控制值要求; 本基坑采用的系统变形控制措施有效地保障了邻近地铁的安全,其设计和施工方法可以为软土地区同类基坑工程设计提供参考。  相似文献   

3.
王耀  李兵  杨家新  王小华  金红柳 《建筑结构》2021,51(15):124-130,106
以北京上下同步逆作法基坑工程为背景,运用PLAXIS 3D有限元软件对上下同步逆作法基坑施工的全过程进行模拟,研究上下同步逆作法基坑的受力、变形特性及其对邻近地铁车站的影响.结果 表明:上部结构施加的竖向荷载和地下连续墙水平荷载耦合会增大地下连续墙水平位移和弯矩;地下连续墙后有地铁车站存在时,由于其遮蔽作用,地表沉降范围随开挖深度增加基本不变,最大沉降比无地铁车站时大17%;随开挖深度增加,二期立柱的隆起随坑底隆起增大不断增大,而一期立柱则在坑底隆起和上部荷载共同作用下由隆起逐渐转为沉降;地铁结构埋深和距基坑边缘的距离对结构变形量和变形形式影响显著,地铁结构的最大变形与基坑开挖深度近似呈线性正相关.  相似文献   

4.
王耀  李兵  杨家新  王小华  金红柳 《建筑结构》2021,51(15):124-130,106
以北京上下同步逆作法基坑工程为背景,运用PLAXIS 3D有限元软件对上下同步逆作法基坑施工的全过程进行模拟,研究上下同步逆作法基坑的受力、变形特性及其对邻近地铁车站的影响.结果 表明:上部结构施加的竖向荷载和地下连续墙水平荷载耦合会增大地下连续墙水平位移和弯矩;地下连续墙后有地铁车站存在时,由于其遮蔽作用,地表沉降范围随开挖深度增加基本不变,最大沉降比无地铁车站时大17%;随开挖深度增加,二期立柱的隆起随坑底隆起增大不断增大,而一期立柱则在坑底隆起和上部荷载共同作用下由隆起逐渐转为沉降;地铁结构埋深和距基坑边缘的距离对结构变形量和变形形式影响显著,地铁结构的最大变形与基坑开挖深度近似呈线性正相关.  相似文献   

5.
《土工基础》2021,(1):1-5
收集苏州地铁29个采用"地下连续墙+内支撑"支护的地铁车站基坑工程实测资料,统计分析苏州地铁车站基坑变形特性。统计结果表明:(1)基坑围护结构最大侧移δ_(hm)范围在(0.13%,0.67%)H_e,平均值为0.32%H_e,H_e为基坑开挖深度;(2)地下连续墙最大侧移点埋深H_(δhm)主要落于(H_e-5,H_e+3)范围内;(3)墙后最大地表沉降δ_(vm)范围在(0.07%,0.7%)H_e,平均值为0.26%H_e,墙后地表沉降影响范围为4.5H_e;(4)苏州地铁车站基坑δ_(vm)/δ_(hm)范围为0.346~1.54。研究成果可为苏州地区或其他软土地区地铁车站基坑围护结构设计提供参考。  相似文献   

6.
针对目前地铁地下车站结构抗震性能研究中不考虑地下连续墙存在的现实问题,通过建立土–地下连续墙–复杂异跨地铁车站结构静动耦合非线性相互作用的有限元数值模型,对比分析了无地下连续墙、含单层地下连续墙及含双层地下连续墙等不同情况下异跨地铁地下车站结构的地震动力反应特征。结果表明:地下连续墙的存在仅在地震强度较小时能够显著提高车站主体结构的抗水平侧移能力,当地震强度较大时结构的水平位移增大明显;从结构层间位移的角度看,结构下层的层间位移涨幅最大,不考虑地下连续墙存在的计算结果将偏于危险;地下连续墙加强了地铁车站结构的抗侧移刚度,致使车站结构整体变形性态和内力分布发生重大变化,其中结构侧墙端部应力水平明显减小,各楼板端部的应力水平明显增大;本文计算工况中,异跨车站结构的下层中柱是抗震设计时的薄弱位置,其中以双层地下连续墙工况时的结构下层最为危险。  相似文献   

7.
上海外滩596地块超深基坑紧邻地铁9号线区间隧道及一系列管线和建筑物。为控制基坑施工对周边环境(尤其地铁隧道)的影响,本项目设计采取分坑顺作、两墙合一地下连续墙、钢支撑轴力补偿体系、被动区加固、抽条分块开挖等系列措施。实测结果表明,远离地铁侧的地下连续墙最大变形为45.6 mm,邻近地铁侧地下连续墙最大变形为17.2 mm,邻近地铁隧道的最大隆起量为12.9 mm。所采用的设计方案满足了地铁的变形控制要求。  相似文献   

8.
苏州地区大尺度深基坑变形性状实测分析   总被引:7,自引:0,他引:7  
以苏州广播电视总台现代传媒广场大尺度深基坑(面积为33500 m2)为工程背景,并收集了该地区11个采用钻孔灌注桩围护、顺作法施工的方形基坑(长宽比1.01~2.68)及至少23个采用地下连续墙围护的长条形地铁车站基坑的实测数据,全面地对比分析了苏州地区采用不同挡土结构、不同形状的大尺度深基坑的变形性状。研究结果表明:1方形基坑连续墙最大侧移值(δhm)平均值为0.08%He;地铁车站基坑连续墙δhm平均值为0.20%He;2方形基坑和地铁车站基坑的围护结构最大侧移点埋深(Hm)分别落于(He-10,He+5)和(He-7,He+8)范围内。采用混凝土支撑的基坑的Hm稍小于采用钢支撑的基坑的Hm;3同样采用地下连续墙围护的本工程方形基坑和长条形地铁车站基坑的墙后地表沉降最大值(δvm)的范围分别为(0.01%~0.09%)He和(0.04%~0.27%)He。地铁车站基坑墙后地表沉降影响范围约为4.5He,大于方形基坑墙后地表沉降的影响范围;4本工程方形基坑和地铁车站基坑δvm/δhm的范围分别为0.13~1.07和0.22~1.65;5方形基坑和地铁车站基坑的立柱隆起值(δcu)分别为(0.07%~0.26%)He和(0.10%~0.23%)He;6大尺度方形基坑和地铁车站基坑表观土压力包络线峰值分别为0.80γHe和0.87γHe,皆出现在开挖面以下(0.21~0.64)He处。采用Terzaghi和Peck及日本土木学会建议的土压力分布模式会显著低估该地区大尺度深基坑表观土压力峰值。  相似文献   

9.
以哈尔滨市某地铁车站深基坑工程开挖为研究对象,研究了深基坑工程围护结构的变形规律。通过现场5个月多个项目的监测,结合基坑周边地表沉降量,重点研究了基坑开挖过程中围护结构的水平位移随地下连续墙深度的变化规律。通过建立二维有限元模型,模拟基坑开挖的施工过程,并对围护结构变形的计算结果与监测数据进行对比分析。结果表明:地下连续墙+混凝土支撑+钢支撑的围护结构形式能有效抵抗基坑的侧向变形;计算结果与监测数据变化趋势大体相同,表明数值模拟过程是合理的,参数选择正确;研究表明,基坑开挖过程中如出现地下连续墙侧移预警,在侧移预警部位临时加装钢支撑是可行有效的工程措施。  相似文献   

10.
针对现行地铁地下车站结构的常见叠合墙式结构设计方法和抗震分析方法中不考虑地下连续墙存在的现实情况,基于数值计算方法,建立了土–地下连续墙–地下结构静动力耦合非线性相互作用有限元分析模型,分析了地下连续墙存在时对地铁地下车站主体结构地震反应的影响规律。研究结果表明:地下连续墙的存在对地铁车站主体结构的抗水平侧移能力有一定的提高作用,使得其顶底间的最大相对位移有显著减小。从这一结果出发,似乎可以认为地下结构抗震分析中不考虑地下连续墙时可看作是地下结构的地震安全储备。但是,地下连续墙的存在明显改变地下结构的整体变形性态,进而导致地下结构的内力发生重分布,尤其使得大震时车站结构的顶、中、底板一些关键部位的地震损伤程度明显比不考虑地下连续墙时要严重;同时,地下连续墙对车站结构顶底板表面与土体间的相对摩擦剪力也产生明显的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号