首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Barat R  Montoya T  Borrás L  Ferrer J  Seco A 《Water research》2008,42(13):3415-3424
A sequencing batch reactor that is operated for biological phosphorus removal has been operated under different influent calcium concentrations to study the precipitation process and the possible effects of phosphorus precipitation in the biological phosphorus removal process. Four experiments were carried out under different influent calcium concentrations ranging from 10 to 90 g Ca m(-3). The experimental results and the equilibrium study, which are based on the saturation index calculation, confirm that the process controlling the calcium behaviour is the calcium phosphate precipitation. This precipitation takes place at two stages: initially, precipitation of the amorphous calcium phosphate, and later crystallization of hydroxyapatite. Also the accumulation of phosphorus precipitated was observed when the influent calcium concentration was increased. In all the experiments, the influent wastewater ratio P/COD was kept constant. It has been observed that, at high calcium concentration, the ratio between phosphate release and acetate uptake (P(rel)/Ac(uptake)) decreases. Changes in the polyphosphate-accumulating organism (PAO) population and in the glycogen-accumulating organism (GAO) population during the experimental period were ruled out by means of fluorescence in situ hybridization. These results could suggest that PAO are able to change their metabolic pathways based on external conditions, such as influent calcium concentration. The accumulation of phosphorus precipitated as calcium phosphate at high influent calcium concentration throughout the experimental period confirmed that phosphate precipitation is a process that can affect the PAO metabolism.  相似文献   

2.
Phosphorus recovery by struvite (MgNH4PO4·6H2O) crystallization is one of the most widely recommended technologies for treating sludge digester liquors especially in wastewater treatments plants (WWTP) with enhanced biological phosphorus removal (EBPR). In this paper, phosphorus recovery by struvite crystallization is assessed using the rejected liquors resulting from four different operational strategies of the sludge treatment line. Phosphorus precipitation and recovery efficiencies of between 80-90% and 70-85%, respectively, were achieved in the four experiments. The precipitates formed were mainly struvite, followed by amorphous calcium phosphate and, in some experiments, by calcite. The highest global phosphorus recovery taking into account both the sludge line and the crystallizer was achieved when mixed thickening and high elutriation were carried out (8.4 gP/kg treated sludge). However, low struvite content was obtained in the crystallizer with this operation scheme due to the high calcium content in the elutriation stream. Therefore, if the final purpose is to obtain struvite, the reduction of the elutriation flowrate is widely recommended in the case of high water hardness.  相似文献   

3.
Aerobic granular sludge from a lab-scale reactor with simultaneous nitrification/denitrification and enhanced biological phosphorus removal processes exhibited significant amount of ammonium adsorption (1.5 mg NH4+-N/g TSS at an ammonium concentration of 30 mg N/L). Potassium release accompanied ammonium adsorption, indicating an ion exchange process. The existence of potassium magnesium phosphate (K-struvite) as one of potassium sources in the granular sludge was studied by X-ray diffraction analysis (XRD). Artificially prepared K-struvite was indeed shown to adsorb ammonium. Alginate-like exopolysaccharides were isolated and their inducement for struvite formation was investigated as well. Potassium magnesium phosphate proved to be a major factor for ammonium adsorption on the granular sludge. Struvites (potassium/ammonium magnesium phosphate) accumulate in aerobic granular sludge due to inducing of precipitation by alginate-like exopolysaccharides.  相似文献   

4.
Lee DS  Jeon CO  Park JM 《Water research》2001,35(16):3968-3976
Simultaneous biological phosphorus and nitrogen removal with enhanced anoxic phosphate uptake was investigated in an anaerobic-aerobic-anoxic-aerobic sequencing batch reactor ((AO)2 SBR). Significant amounts of phosphorus-accumulation organisms (PAOs) capable of denitrification could be accumulated in a single sludge system coexisting with nitrifiers. The ratio of the anoxic phosphate uptake to the aerobic phosphate uptake capacity was increased from 11% to 64% by introducing an anoxic phase in an anaerobic aerobic SBR. The (AO)2 SBR system showed stable phosphorus and nitrogen removal performance. Average removal efficiencies of TOC, total nitrogen, and phosphorus were 92%, 88%, and 100%, respectively. It was found that nitrite (up to 10 mg NO2(-)-N/l) was not detrimental to the anoxic phosphate uptake and could serve as an electron acceptor like nitrate. In fact, the phosphate uptake rate was even faster in the presence of nitrite as an electron acceptor compared to the presence of nitrate. It was found that on-line sensor values of pH, ORP, and DO were somehow related with the dynamic behaviours of nutrient concentrations (NH4+, NO3-, and PO4(3-)) in the SBR. These on-line sensor values were used as real-time control parameters to adjust the duration of each operational phase in the (AO)2 SBR. The real-time controlled SBR exhibited better performance in the removal of phosphorus and nitrogen than the SBR with fixed-time operation.  相似文献   

5.
Randall AA  Liu YH 《Water research》2002,36(14):3473-3478
Eighteen anaerobic/aerobic batch experiments were conducted with a variety of volatile fatty acids (VFAs) on a sequencing batch reactor (SBR) population displaying enhanced biological phosphorus removal (EBPR). A statistically significant (P < 0.01 for all variables) correlation between aerobic phosphorus uptake and polyhydroxyalkanoates (PHAs) quantity and form was observed. The results suggest that poly-3-hydroxy-butyrate (3HB) results in significantly higher aerobic phosphorus (P) uptake per unit mmoles as carbon (mmoles-C) than poly-3-hydroxy-valerate (3HV). The results showed that acetic and isovaleric acids resulted in higher P removals (relative to propionic and valeric acids) during EBPR batch experiments not because of higher PHAs quantity, but largely because the predominant type was 3HB rather than 3HV. In contrast propionic and valeric acids resulted in 3HV, and showed much lower aerobic P uptake per unit PHAs.  相似文献   

6.
Angela M  Béatrice B  Mathieu S 《Water research》2011,45(12):3776-3786
Aerobic granular sludge is a promising process for nutrient removal in wastewater treatment. In this work, for the first time, biologically induced precipitation of phosphorus as hydroxyl-apatite (Ca5(PO4)3(OH)) in the core of granules is demonstrated by direct spectral and optical analysis: Raman spectroscopy, Energy dispersive X-ray (EDX) coupled with Scanning Electron Microscopy (SEM), and X-ray diffraction analysis are performed simultaneously on aerobic granules cultivated in a batch airlift reactor for 500 days. Results reveal the presence of mineral clusters in the core of granules, concentrating all the calcium and considerable amounts of phosphorus. Hydroxyapatite appears as the major mineral, whereas other minor minerals could be transiently produced but not appreciably accumulated. Biologically induced precipitation was responsible for 45% of the overall P removal in the operating conditions tested, with pH varying from 7.8 to 8.8. Major factors influencing this phenomenon (pH, anaerobic phosphate release, nitrification denitrification) need to be investigated as it is an interesting way to immobilize phosphorus in a stable and valuable product.  相似文献   

7.
Chemical phosphorus (P) removal during aerobic wastewater treatment induced by iron salt addition in sewer systems for sulfide control is investigated. Aerobic batch tests with activated sludge fed with wastewater containing iron sulfide precipitates showed that iron sulfide was rapidly reoxidised in aerobic conditions, resulting in phosphate precipitation. The amount of P removed was proportional to the amount of iron salts added, and for the sludge used, ratios of 0.44 and 0.37 mgP/mgFe were obtained for ferric and ferrous dosages, respectively. The hydraulic retention time (HRT) of iron sulfide in sewers was found to have a crucial impact on the settling of iron sulfide precipitates during primary settling, with a shorter HRT resulting in a higher concentration of iron sulfide in the primary effluent and thus enabling higher P removal. A mathematical model was developed to describe iron sulfide oxidation in aerated activated sludge and the subsequent iron phosphate precipitation. The model was used to optimise FeCl3 dosing in a real wastewater collection and treatment system. Simulation studies revealed that, by moving FeCl3 dosing from the WWTP, which is the current practice, to a sewer location upstream of the plant, both sulfide control and phosphate removal could be achieved with the current ferric salt consumption. This work highlights the importance of integrated management of sewer networks and wastewater treatment plants.  相似文献   

8.
The modelling of the enhanced biological phosphorus removal (EBPR) process is a recent focus of interest. The pH profile is a promising output variable for EBPR modelling as it is very sensitive to the consumption or production of acid and base species (e.g. phosphate or VFA). pH-based EBPR modelling is based on the assumption that phosphorus is released and taken up as H2PO4, but this assumption has not been experimentally confirmed yet with enriched EBPR biomass. Therefore, the objective of this work was to assess the species in which P is released and taken up under different pH conditions. Several batch experiments were performed with an enriched culture of Accumulibacter (around 70 ± 10% of total microorganisms). The total observed proton production, inorganic carbon, ammonium, phosphate and VFA were measured to evaluate the titrimetric contribution of anaerobic P-release and aerobic P-uptake over the total observed proton production. The results show that the only phosphorus form involved in P-release and P-uptake is equivalent in terms of proton production to H2PO4 in the pH range of 6.5-8.5. Finally, proton production and pH in several SBR cycles were modelled and resulted in good agreement with the experimental profiles.  相似文献   

9.
Ying Jin  Zhiyou Wen 《Water research》2009,43(14):3493-3502
Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H2SO4, or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and Maillard side reaction. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium interferes with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147 °C and 25.3 min for methane production, and 135 °C and 26 min for orthophosphate release, respectively.  相似文献   

10.
Over 1.5 years continuous piloting of a municipal wastewater plant upgraded with a double membrane system (ca. 0.6 m3 d−1 of product water produced) have demonstrated the feasibility of achieving high water quality with a water yield of 90% by combining a membrane bioreactor (MBR) with a submerged ultrafiltration membrane followed by a reverse osmosis membrane (RO). The novelty of the proposed treatment scheme consists of the appropriate conditioning of MBR effluent prior to the RO and in recycling the RO concentrates back to the biological unit.All the 15 pharmaceuticals measured in the influent municipal sewage were retained below 100 ng L−1, a proposed quality parameter, and mostly below detection limits of 10 ng L−1. The mass balance of the micropollutants shows that these are either degraded or discharged with the excess concentrate, while only minor quantities were found in the excess sludge. The micropollutant load in the concentrate can be significantly reduced by ozonation. A low treated water salinity (<10 mM inorganic salts; 280 ± 70 μS cm−1) also confirms that the resulting product has a high water quality.Solids precipitation and inorganic scaling are effectively mitigated by lowering the pH in the RO feed water with CO2 conditioning, while the concentrate from the RO is recycled to the biological unit where CO2 is stripped by aeration. This causes precipitation to occur in the bioreactor bulk, where it is much less of a process issue. SiO2 is the sole exception. Equilibrium modeling of precipitation reactions confirms the effectiveness of this scaling-mitigation approach for CaCO3 precipitation, calcium phosphate and sulfate minerals.  相似文献   

11.
In full-scale wastewater treatment systems, phosphorus removal typically occurs together with nitrogen removal. Nitrite, an intermediate of both the nitrification and denitrification processes, can accumulate in the reactor. The inhibitory effect of nitrite/free nitrous acid (FNA) on the aerobic metabolism of poly-phosphate accumulating organisms (PAOs) is investigated. A culture highly enriched (90 ± 5%) in Candidatus “Accummulibacter phosphatis”, a well-known PAO, was used to perform a series of batch experiments at various nitrite and pH levels. FNA was found to inhibit all key aerobic metabolic processes performed by PAOs, namely PHA oxidation, phosphate uptake, glycogen replenishment and growth. The inhibitory effect on the anabolic processes (growth, phosphate uptake and glycogen production) was much stronger than that on the catabolic processes (PHA oxidation). 50% inhibition on all anabolic processes occurred at FNA concentrations of approximately 0.5 × 10?3 mg HNO2–N/L (equivalent to 2.0 mg NO2?–N/L at pH 7.0), while full inhibition occurred at FNA concentrations of approximately 6.0 × 10?3 mg HNO2–N. These concentrations could be found in full-scale wastewater treatment systems that achieve nitrogen removal via the nitrite pathway. In comparison, PHA oxidation remained at 40–50% of the highest rate at FNA concentrations in the range 2.0 × 10?3–10.0 × 10?3 mg HNO2–N/L. Interestingly, PAOs were able to reduce nitrite under aerobic conditions (DO ≈ 3 mg/L), with the rate increasing substantially with the FNA concentration. The inhibition on phosphate uptake was found to be reversible.  相似文献   

12.
SBR无厌氧段生物强化除磷的诱导研究   总被引:3,自引:0,他引:3  
采用SBR工艺处理人工配水,考察了进水COD及氨氮浓度、C/N值、好氧时间对诱导无厌氧段生物强化除磷的影响.结果表明,当以醋酸钠为碳源、进水COD和氨氮分别为100和5mg/L、C/N值为20时,对在A/O运行方式下表现为厌氧释磷、好氧超量吸磷的SBR,逐渐缩短其厌氧时间且保持好氧时间为135 min后,好氧吸磷现象并不会消失,仅是吸磷量略有降低.该除磷现象的发生是系统微生物经过特定诱导的结果.  相似文献   

13.
A bench scale study was undertaken to examine the effects of exogenous carbon substrates on the removal of inorganic nitrogen and phosphorus by a simple nitrification-denitrification process. Each plastic tank reactor was subjected to a 7-h aeration followed by a 5-h anoxic stage. Methanol, glucose and sodium acetate, at the concentrations equivalent to theoretical COD values of 100 and 200 mg O2 l−1 were used as external carbon sources and were added to the reactors prior to the anoxic stage. Effects of these additions on biological phosphate release were also investigated. The results showed that 94% of NH4+-N was removed at the end of the aeration period. During the anoxic stage, reduction of nitrate to nitrogen gas was recorded and the denitrification process was significantly enhanced by the addition of organic carbon substrates. At the end of the anoxic stage, over 90% reduction was achieved in the tanks with exogenous carbon substrates while only 47% of NO3-N was removed in the control reactors. Among the three substrates, sodium acetate was the most efficient and effective source, followed by methanol and glucose. Addition of sodium acetate not only increased the amount of nitrate reduction but also enhanced the rate of N removal especially when a high dosage of sodium acetate was used. With respect to phosphorus removal, 88% ortho-P was removed after the aerobic stage. Throughout the anoxic stage, P concentration was maintained at about 2 mg l−1 in both control and methanol treated reactors. However, significant increase in effluent P content was recorded in both sodium acetate and glucose treatments indicating that phosphorus was released from the bacterial cells during the anoxic stage. The amount of P-release in these two treatments was related to the concentrations of the carbon substrate used.  相似文献   

14.
序批式生物膜法除磷机理研究   总被引:12,自引:1,他引:12  
利用^31P-核磁共振谱图证实了生物除磷的机理,即除磷菌在厌氧条件下分解胞内的聚磷酸盐并释放出正磷酸盐形式的无机磷酸盐,而在好氧或缺氧条件下吸收胞外的无机磷酸盐后转化为聚磷酸盐而贮存于胞内。同时证明了淹没序批式生物膜反应器中磷的去除是由生物完成的。  相似文献   

15.
《Water research》1996,30(7):1573-1584
Simultaneous enhanced biological phosphate uptake and biological denitrification under anoxic conditions were investigated in a modified lab-scale nutrient removal activated sludge system. The aim of the experiments was to find whether poly-P bacteria are capable of taking up phosphate under anoxic conditions by utilising nitrate as an electron acceptor. The phosphate uptake in anoxic conditions was compared to that in aerobic environment in batch tests. The results of the long-term operation of continuous-flow lab-scale system as well as the results of batch tests showed that the anoxic phosphate uptake with simultaneous denitrification after preceding anaerobic substrate uptake could significantly reduce the extent of competition for organic substrate between poly-P bacteria and denitrifiers. A side-stream nitrification in fixed-film reactor enabled to reduce the losses of organic carbon by aerobic oxidation and to stabilise the slow-growing population of nitrifiers in the system.  相似文献   

16.
Liu Ye  Maite Pijuan 《Water research》2010,44(9):2901-4682
Nitrite/Free Nitrous Acid (FNA) has previously been shown to inhibit aerobic and anoxic phosphate uptake by polyphosphate accumulating organisms (PAOs). The inhibitory effect of FNA on the aerobic metabolism of Glycogen Accumulating Organisms (GAOs) is investigated. A culture highly enriched (92 ± 3%) in Candidatus Competibacter phosphatis (hereafter called Competibacter) was used. The experimental data strongly suggest that FNA likely directly inhibits the growth of Competibacter, with 50% inhibition occurring at 1.5 × 10−3 mgN-HNO2/L (equivalent to approximately 6.3 mgN-NO2/L at pH 7.0). The inhibition is well described by an exponential function. The organisms ceased to grow at an FNA concentration of 7.1 × 10−3 mgN-HNO2/L. At this FNA level, glycogen production, another anabolic process performed by GAOs in parallel to growth, decreased by 40%, while the consumption of polyhydroxyalkanoates (PHAs), the intracellular carbon and energy sources for GAOs, decreased by approximately 50%. FNA likely inhibited either or both of the PHA oxidation and glycogen production processes, but to a much less extent in comparison to the inhibition on growth. The comparison of these results with those previously reported on PAOs suggest that FNA has much stronger inhibitory effects on the aerobic metabolism of PAOs than on GAOs, and may thus provide a competitive advantage to GAOs over PAOs in enhanced biological phosphorus removal (EBPR) systems.  相似文献   

17.
In the present work, the effect of temperature and solution pH on calcium carbonate precipitation from iron‐rich waters was investigated. Calcium carbonate was precipitated by CO2 removal. The increase in the temperature or the solution pH leads to the acceleration of calcium carbonate nucleation and crystal growth. Iron addition retards the formation of calcium carbonate crystals and enhanced the precipitation in the bulk solution. At high supersaturations, the inhibition effectiveness of iron is small and it could be improved by lowering the solution pH. The results of the present work show that it is possible to reduce or completely prevent scale formation in different water treatment processes by controlling the operating parameters which favourably affects the water treatment costs, increases the equipment life and allows increased product water recovery.  相似文献   

18.
Ichihashi O  Satoh H  Mino T 《Water research》2006,40(8):1627-1633
In this study, the effect of soluble microbial products (SMP) on the metabolisms related to phosphate or nitrogen removal of activated sludge was investigated. Two anaerobic-aerobic activated sludge processes were operated, one with a hydraulic retention time (HRT) of 48 h (RunL) and the other 6.4 h (RunS). The longer HRT of RunL was intended to promote the accumulation of SMPs in the supernatant. With the sludge from RunS and the supernatant from both of the runs, supernatant exchange batch experiments (SEBEs) were conducted, in which the acetate uptake rate and phosphate release rates under anaerobic conditions and the phosphate uptake rate under aerobic conditions were measured as these metabolisms are related to enhanced biological phosphorus removal. The nitrification rate was also measured. The statistical analyses of the results from the SEBEs showed that the supernatant from RunL had an inhibitory effect on the anaerobic acetate uptake and nitrification of the sludge from RunS. The cause of which was attributed to SMPs in the supernatant from RunL. As a result, the inhibitory effect of SMPs on nitrification and anaerobic acetate uptake was confirmed.  相似文献   

19.
MLSS、pH及NO-2-N对反硝化除磷的影响   总被引:31,自引:3,他引:31  
利用DPB反硝化聚磷污泥以SBR进行试验,以考察MLSS、pH值和NO-2-N浓度对聚磷菌厌氧放磷和缺氧吸磷过程的影响.结果表明:增大MLSS可缩短放磷和缺氧吸磷反应时间,但MLSS过高易导致反硝化吸磷后期出现磷的二次释放;随着pH值的升高(pH=6~8)则P/C值也升高,继续升高pH值到8以上时发生了磷酸盐的沉淀,影响到正常的放磷反应.此外,在反硝化吸磷过程中pH值的大幅升高也会对生物除磷效果造成干扰;控制NO-2-N浓度为5.5~9.5mg/L可使聚磷污泥以NO-2-N作为电子受体进行吸磷反应,当NO-2-N达到15 mg/L时反硝化和吸磷反应均受到了抑制.  相似文献   

20.
Effect of nitrite on phosphate uptake by phosphate accumulating organisms   总被引:42,自引:0,他引:42  
In biological nitrogen removal processes, nitrite can be formed and accumulated through both nitrification and denitrification. Despite the fact that, in practice, biological phosphate removal (BPR) is often combined with biological nitrogen removal, there are only a few publications reporting the effect of nitrite on BPR. In this study, phosphate-accumulating organisms (PAO) were cultivated in an anaerobic-anoxic-aerobic sequencing batch reactor (SBR). The effect of nitrite on the enrichment of the sludge with PAO, the phosphate uptake rates and the sludge respiration was investigated. The results indicate that (1) presence of nitrite inhibits both aerobic and anoxic (denitrifying) phosphate uptake, (2) aerobic phosphate uptake was more affected than anoxic phosphate uptake, (3) presence of nitrite could be one of the factors enhancing the presence of glycogen accumulating organisms (GAO)--competitors to PAO for substrate in the anaerobic phase, and (4) it is required to monitor and control nitrite accumulation in a full-scale wastewater treatment plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号