首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以棉花秸秆纤维作为脱硫石膏的增强材料,研究不同棉花秸秆纤维掺量、碱处理浓度对脱硫石膏-棉花秸秆纤维复合墙体材料物理力学性能及保温性能的影响。结果表明,棉花秸秆纤维掺量3%的试样强度较高,抗折和抗压强度分别较空白样提高35.2%和7.0%。棉花秸秆纤维经碱溶液处理后,与脱硫石膏之间胶结能力增强,有利于提高脱硫石膏-棉花秸秆纤维复合墙体材料的物理力学性能,采用8%碱溶液处理的试样抗折和抗压强度分别可增至9.0、16.6 MPa。掺加棉花秸秆纤维能够增加脱硫石膏基复合墙体材料孔隙率,导热系数最低可降至0.105 W(/m.K),保温性能得到提高。  相似文献   

2.
以玉米秸秆纤维和稻草秸秆纤维作为脱硫石膏的增强材料,研究不同纤维掺量、碱处理浓度对农作物秸秆纤维增强脱硫石膏墙体材料物理力学性能、耐水性能和保温性能的影响.结果表明:玉米秸秆纤维掺量为3%时试样强度最高,抗折和抗压强度分别达到6.4 MPa和14.9 MPa,而掺稻草秸秆纤维的分别为6.2 MPa和14.3 MPa.农作物秸秆纤维经碱溶液处理后,与脱硫石膏之间胶结能力增强,5%碱溶液处理试样的抗折强度和抗压强度分别可提高到7.1 MPa和16.4 MPa.纤维能够阻止水分在墙体材料内部孔隙中迁移,提高其耐水性能,墙体材料吸水率最低为21.3%,软化系数最高可达0.56.掺加农作物秸秆纤维能够增加脱硫石膏墙体材料孔隙率,故降低其导热系数,导热系数最低可降至0.121 W/(m·K).  相似文献   

3.
基于纤维对石膏具有增强与增韧的作用,研究了分别掺加PVA纤维和木质纤维素纤维对EPS颗粒/脱硫石膏强度、吸水率和表观密度的影响。结果表明,纤维对EPS颗粒/脱硫石膏的增强效果显著,PVA纤维的增强效果优于木质纤维素纤维。PVA纤维的最优掺量为1.2%,此时EPS颗粒/脱硫石膏的吸水率为26.44%,表观密度为0.825 g/cm~3,干燥状态下抗折与抗压强度分别为5.26、6.01 MPa,较未掺纤维的分别提高了121.94%和25.73%;木质纤维素纤维的最优掺量为1.4%,此时EPS颗粒/脱硫石膏的吸水率为26.22%,表观密度为0.826 g/cm~3,干燥状态下抗折与抗压强度分别为3.02、5.59 MPa,较未掺纤维的分别提高了27.43%和16.95%。  相似文献   

4.
在激发剂的作用下,利用矿渣改性磷石膏(PG)制备磷石膏基胶凝材料(PGS),然后研究掺入钢渣和粉煤灰制备磷石膏复合材料的性能情况。结果表明:当激发剂掺量在3%时,在20℃(湿度大于70%)养护下PGS固化体28d的抗压强度和抗折强度(41.9MPa和7.1MPa)分别较未掺激发剂的提高了47.3%和42.3%,28d软化系数为0.94;当钢渣比例在1:1时,磷石膏砂浆性能最佳,28d抗压强度和抗折强度分别为57.1MPa和4.8MPa;粉煤灰掺量在20%时,磷石膏砂浆抗压强度和抗折强度分别为22.1MPa和3.4MPa,吸水率和软化系数分别为4.9%和0.94,质量损失率、抗压强度损失率和抗折强度损失率分别为1.5%、4.5%和4.3%。  相似文献   

5.
《砖瓦》2020,(1)
研究了无机材料及玻璃纤维增强脱硫石膏强度。实验结果表明单掺无机材料能不同程度改善石膏强度,复掺后石膏7d的抗折、抗压强度可达5.91MPa、23.85MPa;掺入玻璃纤维能够明显改善石膏抗折强度,经煮沸、盐酸及偶联剂预处理后掺入石膏中7d抗折、抗压强度可达7.58MPa、26.15MPa。  相似文献   

6.
纤维对水泥基复合材料具有一定的增强增韧作用,同时,由废旧橡胶制成的胶粉以骨料形式掺入水泥基复合材料中也可增加基体韧性。研究了在聚乙烯醇纤维增强水泥基复合材料中,以不同掺量的可再分散乳胶粉部分替代纤维对其抗折强度和抗压强度的影响。结果表明,掺加体积分数0.5%胶粉后的纤维增强水泥基复合材料,较对比试件抗折强度提高了24.3%;掺加体积分数1%胶粉后的试件抗压强度提高了40.4%;掺加体积分数0.5%胶粉的试件在抗折强度和抗压强度大幅度提高的同时,保持了折压比不降低。因此,在水泥基复合材料中存在纤维的情况下,加入适当掺量的胶粉部分替代纤维可更大程度地提高构件的强度,并可节约材料成本,减少工程造价。  相似文献   

7.
以普通硅酸盐水泥为基体,与玉米秸秆纤维复合制成硅酸盐水泥基秸秆复合材料,研究了酸、碱、盐3种玉米秸秆处理液的浓度与处理时间对复合材料力学性能的影响规律,并确定了3种处理液的最佳处理浓度和处理时间。研究结果表明:当3~4 cm的秸秆纤维掺加量为50%(占水泥体积的百分比)时,随着NaOH浓度从4%增加至6%,复合材料的抗折强度增加,抗压强度增加,当NaOH浓度为6%,处理时间为12 h时,复合材料的抗折强度和抗压强度最高,分别为11.7、26.8 MPa;随着H2O2浓度从2%增加至8%,复合材料的抗折强度增加,抗压强度增加,当H2O2浓度为8%,处理时间为10 min时,复合材料的抗折强度和抗压强度最高,分别为11.3、23.6 MPa,H2O2浓度为2%,处理时间为20 min时,复合材料的抗折强度最高,为11.7 MPa,处理时间为50 min时,复合材料的抗压强度最高,为25.5 MPa;随着Na2SiO3浓度从1%增加至2%,复合材料的抗折强度增加,抗压强度增加,当Na2SiO3浓度为2%,处理时间为10 min时,复合材料的抗折强度和抗压强度最高,分别为9.9、20.1 MPa。  相似文献   

8.
通过向预处理的钛石膏中加入萘系减水剂和硫酸钠等外加剂,研究了各外加剂对钛石膏物理性能的影响,确定了各外加剂的最佳掺量,并探讨了各外加剂的作用机理。研究表明,当萘系减水剂掺量为3%时,减水效果最好,此时钛石膏试样的标稠用水量最小为126%,相比于空白试样降低了18%,2 h抗折、抗压强度分别为1.09 MPa、1.98 MPa,绝干抗折、抗压强度分别为2.24 MPa、2.77 MPa;硫酸钠掺量为1.5%时钛石膏物理性能最好,此时钛石膏凝结时间较短初凝时间和终凝时间分别为8 min和10 min,2 h抗折、抗压强度分别为1.21 MPa和2.32 MPa,绝干抗折、抗压强度分别为2.43 MPa和3.02 MPa。  相似文献   

9.
脱硫石膏制品普遍存在遇水后强度下降很快的缺陷,严重制约其使用功能。以铝酸盐水泥和普通硅酸盐水泥按一定比例配制而成的无机外加剂掺入脱硫石膏中,改善脱硫石膏的耐水性能,研究不同外加剂掺入量条件下脱硫石膏的力学性能和耐水性能的变化规律。结果表明,与不加外加剂相比,当掺入5%的外加剂时,脱硫石膏的吸水率为0.23,降低了23.33%;脱硫石膏的绝干、吸水饱和抗压强度分别为21.25MPa和9.43 MPa,脱硫石膏的抗折、抗压软化系数分别为0.49和0.44,分别提高了16.94%、39.30%、23.25%、37.60%。  相似文献   

10.
聚丙烯纤维和有机乳液复合改性脱硫建筑石膏   总被引:1,自引:0,他引:1  
掺加聚丙烯纤维对脱硫建筑石膏进行物理改性,研究纤维掺量及掺加工艺对脱硫建筑石膏力学性能的影响;掺加有机乳液对脱硫建筑石膏进行化学改性,研究脱硫建筑石膏的耐水性能,并构建乳液防水物理模型;研究聚丙烯纤维和有机乳液对脱硫建筑石膏性能的复合改性效果,利用扫描电镜进行微观形貌分析,对聚丙烯纤维和有机乳液的复合改性作用机理进行讨论.试验表明,经过聚丙烯纤维和有机乳液的复合改性作用,脱硫建筑石膏的性能指标为:抗折强度8.57MPa,抗压强度10.14MPa,24h吸水率6.01%(质量分数).  相似文献   

11.
通过对16组分别掺入钢纤维和聚丙烯纤维的活性粉末混凝土试件进行抗压、抗折强度试验,并且对每组试件采用了三种不同的养护方案。试验结果表明:热水养护对活性粉末混凝土的抗压和抗折强度有较大幅度的提升,当温度达75℃时,提升幅度10%~30%;相比单掺聚丙烯纤维单掺钢纤维对活性粉末混凝土试块的抗压、抗折强度提升幅度更大,钢纤维含量为4%时活性粉末混凝土的抗压和抗折强度分别提高21%和53%;钢纤维掺量为2%和聚丙烯纤维掺量为0.3%并且经过75℃高温养护的活性粉末混凝土试块其抗压、抗折力学性能达到最优,其抗压强度达到168.4MPa,抗折强度达到31.57MPa。  相似文献   

12.
研究了不同种类和颗粒级配细骨料和3种聚羧酸减水剂对掺有氟石膏的复合型石膏基地面自流平砂浆性能的影响。结果表明:当细骨料掺量为20%时,掺入石英砂的自流平砂浆流动性和力学性能均优于掺入碳酸钙砂的自流平砂浆;自流平砂浆的流动性与所掺聚羧酸减水剂的分子结构有关;优化后的自流平砂浆30 min流动度增大5 mm,24 h抗折和抗压强度分别为3.3、9.7 MPa,绝干抗折和抗压强度分别为10.6、27.6 MPa,符合JC/T 1023—2007《石膏基自流平砂浆》的要求。  相似文献   

13.
研究了玄武岩纤维对再生骨料混凝土(RAC)力学性能的影响,对玄武岩纤维掺量为0、0.3%、0.6%、0.9%的再生混凝土进行了抗压、抗折、轴压及劈裂抗拉试验。拟合了不同纤维掺量的再生骨料混凝土的应力应变曲线,对玄武岩纤维再生骨料混凝土的抗折破坏进行了数值模拟。研究结果显示:玄武岩纤维可以有效改善RAC力学性能。相较未掺入纤维的RAC分析可得,抗压强度和劈裂抗拉强度在纤维掺量为0.3%时改善程度达到最大,分别为39.42、3.03 MPa,提高了13.44%、6.32%;抗折强度和轴心抗压强度在纤维掺量为0.6%时改善程度达到最大,分别为5.01、27.46 MPa,提高了10.35%、10.9%。但是过量纤维的掺入使得纤维分布不均匀,反而导致RAC力学性能降低。  相似文献   

14.
通过对11组聚乙烯醇纤维水泥基复合材料(PVA-ECC)试件的抗压强度、抗折强度及单面盐冻试验,探究粉煤灰掺量和纤维掺量对PVA纤维水泥基复合材料力学性能及抗冻性能的影响。结果表明:抗压强度与抗折强度均随粉煤灰掺量的增加而降低;纤维掺量对抗折强度影响较大,而对抗压强度影响很小。单面盐冻试验中,试件单位面积质量损失与相对动弹性模量损失率均随冻融循环次数增加而增长,粉煤灰掺量为45%~50%、纤维掺量为1.75%时,抗冻性能达到最佳。  相似文献   

15.
潘红  李国忠 《砖瓦》2013,(8):3-6
通过掺加聚丙烯纤维增强脱硫石膏的力学性能,制备出一种聚丙烯纤维/脱硫石膏复合材料,并掺加一定量硬脂酸-聚乙烯醇乳液改善复合材料的耐水性能。实验考察了聚丙烯纤维和硬脂酸-聚乙烯醇乳液对材料抗折、抗压强度,吸水率和软化系数的影响。利用扫描电子显微镜对试样的断面进行微观分析,并构建了物理模型对有机乳液的防水机理进行了探讨。实验结果表明:与空白试样相比,单掺6%聚丙烯纤维可使石膏试样的抗折、抗压强度分别提高47.83%、27.88%,但其耐水性能有一定程度地削弱;而掺加硬脂酸-聚乙烯醇乳液可弥补聚丙烯纤维造成的强度损失,当硬脂酸-聚乙烯醇乳液加入量为3%时,石膏试样浸水2 h、24 h的吸水率分别降低90.30%、85.62%;同时掺加聚丙烯纤维和硬脂酸-聚乙烯醇乳液制备的复合材料试样力学性能和耐水性能均得到明显改善。  相似文献   

16.
研究了高铝水泥对脱硫建筑石膏的标准稠度用水量、凝结时间及力学性能的影响,并结合复合胶凝材料的微观结构进行了机理分析。试验结果表明:高铝水泥的添加减小了脱硫建筑石膏的标准稠度用水量,延长了凝结时间,并且提高了试件的力学性能和耐水性。当掺量为20%时,试件的28 d抗折、抗压强度分别为6.03、11.05 MPa,比纯石膏提高了99.67%和80.56%,软化系数达0.70,比纯石膏提高了59.09%。通过微观表征可知,掺入高铝水泥后,石膏晶体表面生成了强度高且不溶于水的C-S-H凝胶和钙矾石,这是高铝水泥能提高脱硫建筑石膏力学强度和耐水性的原因。  相似文献   

17.
缓凝剂对建筑石膏强度性能影响的试验   总被引:1,自引:1,他引:0  
利用抗折试验机和抗压试验机对建筑石膏试件进行强度测试试验,系统深入地研究了不同掺入量的缓凝剂对建筑石膏的抗压强度、抗折强度、压折比等强度特性,分析了建筑石膏的抗压强度、抗折强度等与不同掺量的缓凝剂之间的关系。试验结果表明:建筑石膏的抗压强度、抗折强度随着缓凝剂掺量的增加而降低,压折比则相反,它是随着缓凝剂掺量的增加而增加的。  相似文献   

18.
研究了玄武岩纤维掺量对全再生粗骨料混凝土抗压和抗折强度、破坏形态、单轴受压应力-应变曲线的影响.结果表明:掺入玄武岩纤维后,试件的抗压强度提高,受压破坏时的整体性更好;随着玄武岩纤维掺量的增加,试件的抗折强度逐渐增大,所有抗折试件均为峰值后脆性破坏;随着玄武岩纤维掺量的增加,试件的峰值应力先增大后减小,峰值应变、静压弹...  相似文献   

19.
赵焕起  李国忠 《砖瓦》2013,(10):53-56
以脱硫石膏作为胶凝材料,配以适量的外掺料和外加剂,研究石膏缓凝剂多聚磷酸钠对脱硫石膏抹面材料凝结时间和力学性能的影响;掺加复合防水剂,研究其对脱硫石膏抹面材料的力学性能和防水性能的影响。实验发现:多聚磷酸钠都能使脱硫石膏抹面材料的凝结时间和力学性能达到抹面材料标准要求;掺加复合防水剂可以较好的提高脱硫石膏的抗折、抗压强度,脱硫石膏的软化系数随着复合防水剂掺量的增加而逐渐增大。在复合防水剂掺量为0.32%时,脱硫石膏绝干抗折强度增大为4.17 MPa,绝干抗折强度增大为12.36 MPa,软化系数为85.53%,脱硫石膏的吸水率为10.33%,基本可以满足脱硫石膏抹面材料对防水性能的要求。  相似文献   

20.
《混凝土》2016,(8)
分别将钢纤维、聚丙烯纤维按照0.25%、0.5%、0.75%的体积掺加率,以体积比1∶1、1∶2、2∶1混杂后掺入C60混凝土基体中共浇筑30组抗压、抗折、劈裂抗拉试件,通过对其进行抗压、抗折、劈裂抗拉试验研究,分析纤维掺量和混杂比对高强混凝土基本力学性能的影响。结果表明:混杂纤维的掺入降低了混凝土基体的抗压强度,混杂纤维混凝土抗压强度随纤维掺加率增大总体呈下降趋势,相同体积掺加率下,抗压强度随着混杂比中钢纤维掺量的增加亦大致呈逐渐下降的趋势;混杂纤维的掺入对混凝土基体的劈裂抗拉强度有很大改善,混杂纤维混凝土劈裂抗拉强度随着体积掺加率的增加呈先下降后增高的趋势,但随混杂比的规律并不清晰;混杂纤维的掺入对混凝土基体的抗折强度均有较大幅度提高,混杂纤维混凝土抗折强度随纤维掺量的增大呈先升后降的趋势,同体积掺加率情况下,所有混杂比对纤维混凝土抗折强度影响的规律亦不一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号