首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
OH and HO2 profiles measured in a real environment have been compared to the results of the INCA‐Indoor model to improve our understanding of indoor chemistry. Significant levels of both radicals have been measured and their profiles display similar diurnal behavior, reaching peak concentrations during direct sunlight (up to 1.6×106 and 4.0×107 cm?3 for OH and HO2, respectively). Concentrations of O3, NOx, volatile organic compounds (VOCs), HONO, and photolysis frequencies were constrained to the observed values. The HOx profiles are well simulated in terms of variation for both species (Pearson's coefficients: pOH=0.55, pHO2=0.76) and concentration for OH (mean normalized bias error: MNBEOH=?30%), HO2 concentration being always underestimated (MNBEHO2=?62%). Production and loss pathways analysis confirmed HONO photolysis role as an OH precursor (here up to 50% of the production rate). HO2 formation is linked to OH‐initiated VOC oxidation. A sensitivity analysis was conducted by varying HONO, VOCs, and NO concentrations. OH, HO2, and formaldehyde concentrations increase with HONO concentrations; OH and formaldehyde concentrations are weakly dependent on NO, whereas HO2 concentrations are strongly reduced with increasing NO. Increasing VOC concentrations decreases OH by consumption and enhances HO2 and formaldehyde.  相似文献   

2.
Reactive indoor chemistry has seldom been considered in investigations of the health effects of exposure to indoor contaminants although improved understanding may help to reduce exposure misclassification as well as identify previously unknown exposures. Nitrous acid (HONO), formed from the heterogeneous reaction of NO2 with water on indoor surfaces, may be a neglected and important confounder in studies of nitrogen dioxide (NO2) health effects. The understanding of HONO – NO2 relationships is important since conventional measurements of NO2 actually measure a number of nitrogen oxides including HONO. Accordingly, we examined the effects of relative humidity, chamber residence time, the presence of carpeted sufaces and the presence of human subjects on the production of HONO following the injection of NO2 into a chamber. Increasing chamber relative humidity led to greater HONO concentrations at a given NO2 level. At 80% relative humidity, HONO concentrations were 11% of the NO2 concentration. Increased residence time in the chamber increased HONO levels, with a five-fold increase in HONO levels between 20 minute and 120 minute residence times. The presence of wool carpets in the chamber was not found to affect significantly the HONO production rates, although NO2 decay rates were increased. When human subjects were present in the chamber, HONO concentrations decreased by as much as 50% of the levels present under similar conditions with no subjects in the chamber. In light of our results we argue that future investigations of NO2 health effects and indoor air quality must recognize the importance of indoor chemistry, and in particular, the likelihood of elevated concentrations of HONO which will interfere with NO2 measurements and potentially confound the investigation of concentration-effect relationships. Similarly, previous studies demonstrating a relationship between health endpoints and NO2 exposure should be viewed with caution until the presence and importance of other potentially toxic nitrogenous compounds in the exposure environment are evaluated.  相似文献   

3.
In the present study, emission indices for NO, NO2, HONO, HCHO, CO, particle mass, and particle numbers including particle size distributions for three different offering candles were determined. The candles investigated showed similar emission characteristics with emission indices (g/kg) in good agreement with former candle emission studies. An average HONO/NOx emission ratio of 6.6 ± 1.1% was obtained, which is much higher compared to most other combustion sources, indicating that candles may be a significant indoor source of this important trace gas. The particle size distributions indicate that the majority of the emitted particles are in the size range 7 - 15 nm. Three modes were observed during burning the candles with very different emission profiles: a “normal burning” mode characterized by low particle number emission rates and small particles; an initial “sooting” behavior after ignition, and a final “smoldering” phase upon candle extinction with higher particle number emission rates and larger particles. The particle emission upon extinction is dependent on the extinction method. The NOx emission indices were applied in a simple box model to calculate typical indoor NOx concentration levels from candle emissions, which were in excellent agreement with direct measurements in a typical indoor environment.  相似文献   

4.
Increased outdoor concentrations of fine particulate matter (PM2.5) and oxides of nitrogen (NO2, NOx) are associated with respiratory and cardiovascular morbidity in adults and children. However, people spend most of their time indoors and this is particularly true for individuals with chronic obstructive pulmonary disease (COPD). Both outdoor and indoor air pollution may accelerate lung function loss in individuals with COPD, but it is not feasible to measure indoor pollutant concentrations in all participants in large cohort studies. We aimed to understand indoor exposures in a cohort of adults (SPIROMICS Air, the SubPopulations and Intermediate Outcome Measures in COPD Study of Air pollution). We developed models for the entire cohort based on monitoring in a subset of homes, to predict mean 2-week–measured concentrations of PM2.5, NO2, NOx, and nicotine, using home and behavioral questionnaire responses available in the full cohort. Models incorporating socioeconomic, meteorological, behavioral, and residential information together explained about 60% of the variation in indoor concentration of each pollutant. Cross-validated R2 for best indoor prediction models ranged from 0.43 (NOx) to 0.51 (NO2). Models based on questionnaire responses and estimated outdoor concentrations successfully explained most variation in indoor PM2.5, NO2, NOx, and nicotine concentrations.  相似文献   

5.
Retail buildings have a potential for both short‐term (customer) and long‐term (occupational) exposure to indoor pollutants. However, little is known about volatile organic compound (VOC) concentrations in the retail sector and influencing factors, such as ventilation, in‐store activities, and store type. We measured VOC concentrations and ventilation rates in 14 retail stores in Texas and Pennsylvania. With the exception of formaldehyde and acetaldehyde, VOCs were present in retail stores at concentrations well below health guidelines. Indoor formaldehyde concentrations ranged from 4.6 ppb to 67 ppb. The two mid‐sized grocery stores in the sample had the highest levels of ethanol and acetaldehyde, with concentrations up to 2.6 ppm and 92 ppb, respectively, possibly due to the preparation of dough and baking activities. Indoor‐to‐outdoor concentration ratios indicated that indoor sources were the main contributors to indoor VOC concentrations for the majority of compounds. There was no strong correlation between ventilation and VOC concentrations across all stores. However, increasing the air exchange rates at two stores led to lower indoor VOC concentrations, suggesting that ventilation can be used to reduce concentrations for some specific stores.  相似文献   

6.
The photolysis of HONO has been found to be the oxidation driver through OH formation in the indoor air measurement campaign SURFin, an extensive campaign carried out in July 2012 in a classroom in Marseille. In this study, the INCA‐Indoor model is used to evaluate different HONO formation mechanisms that have been used previously in indoor air quality models. In order to avoid biases in the results due to the uncertainty in rate constants, those parameters were adjusted to fit one representative day of the SURFin campaign. Then, the mechanisms have been tested with the optimized parameters against other experiments carried out during the SURFin campaign. Based on the observations and these findings, we propose a new mechanism incorporating sorption of NO2 onto surfaces with possible saturation of these surfaces. This mechanism is able to better reproduce the experimental profiles over a large range of conditions.  相似文献   

7.
Heterogeneous surface reactions play a key role in the chemistry of the indoor environment because of the large indoor surface-to-volume ratio. The presence of photocatalytic material in indoor paints may allow photochemical reactions to occur at wavelengths of light that are present indoors. One such potential reaction is the heterogeneous photooxidation of NO to HONO. NO(g) is commonly found indoors, originating from combustion sources, ventilation and infiltration of outdoor air. We studied the interaction of NO(g) with painted surfaces illuminated with indoor fluorescent and incandescent lighting. There is a loss of NO(g) to painted surfaces in the dark at both 0 and 50% RH. At 50% RH, there is a re-release of some of that NO(g) under illumination. The same behavior is observed for illumination of different colored paints. This is in contrast to what is seen with TiO2 as the substrate, where photoenhanced uptake of NO(g) and formation of NO2(g) are observed. We hypothesize that the loss of NO(g) is due to adsorption and diffusion into the paint. The re-release of NO under illumination is thought to be due to photooxidation of NO to HONO on the painted surface at higher relative humidities and subsequent HONO photolysis.  相似文献   

8.
People are an important source of pollution indoors, through activities such as cleaning, and also from “natural” emissions from breath and skin. This paper investigates natural emissions in high‐occupancy environments. Model simulations are performed for a school classroom during a typical summer in a polluted urban area. The results show that classroom occupants have a significant impact on indoor ozone, which increases from ~9 to ~20 ppb when the pupils leave for lunch and decreases to ~14 ppb when they return. The concentrations of 4‐OPA, formic acid, and acetic acid formed as oxidation products following skin emissions attained maximum concentrations of 0.8, 0.5, and 0.1 ppb, respectively, when pupils were present, increasing from near‐zero concentrations in their absence. For acetone, methanol, and ethanol from breath emissions, maximum concentrations were ~22.3, 6.6, and 21.5 ppb, respectively, compared to 7.4, 2.1, and 16.9 ppb in their absence. A rate of production analysis showed that occupancy reduced oxidant concentrations, while enhancing formation of nitrated organic compounds, owing to the chemistry that follows from increased aldehyde production. Occupancy also changes the peroxy radical composition, with those formed through isoprene oxidation becoming relatively more important, which also has consequences for subsequent oxidant concentrations.  相似文献   

9.
A correlation between atmospheric pollution due to the emission of volatile organic compounds (VOC) and the non-methane hydrocarbon/nitrogen oxide (NMHC/NOx) ratio has been determined. We supposed the source of NMHC in a region using the NMHC/NOx ratio without needing to consider diffusion and dilution due to meteorological conditions. At general measurement stations in Neyagawa and Higashiosaka cities in Osaka Prefecture, the NMHC/NOx ratio was high in summer though the NMHC and NOx concentrations were high in early winter. Conversely, measurements of the ratio at a traffic measurement station in Shijonawate did not have this pattern. That is, NMHC emission increased with the temperature in Neyagawa and Higashiosaka. It was concluded the waste plastic processing facility increased the NMHC/NOx ratio by comparing the change in the annually averaged NMHC/NOx ratio at Neyagawa and Higashiosaka with the developments of disposal and treatment facilities in Neyagawa. In the case of Neyagawa, ventilation is not suitable for improving indoor air quality, because the outdoor pollution level can be higher than that indoors. The NMHC/NOx ratio is a useful index to evaluate the change in the regional environment due to VOC pollution, and it can judge whether outdoor air can improve indoor air quality by ventilation.  相似文献   

10.
An INdoor air Detailed Chemical Model was developed to investigate the impact of ozone reactions with indoor surfaces (including occupants), on indoor air chemistry in simulated apartments subject to ambient air pollution. The results are consistent with experimental studies showing that approximately 80% of ozone indoors is lost through deposition to surfaces. The human body removes ozone most effectively from indoor air per square meter of surface, but the most significant surfaces for C6‐C10 aldehyde formation are soft furniture and painted walls owing to their large internal surfaces. Mixing ratios of between 8 and 11 ppb of C6‐C10 aldehydes are predicted to form in apartments in various locations in summer, the highest values are when ozone concentrations are enhanced outdoors. The most important aldehyde formed indoors is predicted to be nonanal (5‐7 ppb), driven by oxidation‐derived emissions from painted walls. In addition, ozone‐derived emissions from human skin were estimated for a small bedroom at nighttime with concentrations of nonanal, decanal, and 4‐oxopentanal predicted to be 0.5, 0.7, and 0.7 ppb, respectively. A detailed chemical analysis shows that ozone‐derived surface aldehyde emissions from materials and people change chemical processing indoors, through enhanced formation of nitrated organic compounds and decreased levels of oxidants.  相似文献   

11.
Ozone represents the main atmospheric pollutant in the São Paulo Metropolitan Area (SPMA). In this region, its concentration exceeds the national air quality standards for several days out of the year. Ozone is a secondary pollutant and is a product of VOCs, NOx, and sunlight. Thus, it is very difficult to elaborate efficient strategies for its reduction. Computational simulations may provide an interesting alternative to evaluate the many factors that affect ozone formation. In this study, the trajectory model OZIPR was used together with the SAPRC chemical mechanism to determine the incremental reactivity scale for VOCs in the SPMA. VOC input data were obtained from two campaigns that were performed in the studied area in 2006. Values for CO, NOx, and meteorological parameters were obtained by automatic monitors. Five base-cases were created to verify the variation in maximum ozone concentration and thus determine the ozone formation potential of each VOC. NOx and VOC emissions were independently and simultaneously reduced by 5, 10, 20, and 30% to verify variations in ozone formation. With the simulator output data, ozone isopleths charts were generated for the city of São Paulo. Analysis of the obtained results shows that the most frequent compounds found among the ten main ozone precursors in São Paulo, using the reactivity scales created from the five base-cases, were: formaldehyde, acetaldehyde, propene, isoprene, cis-2-butene, and trans-2-butene, with formaldehyde being always the main ozone precursor compound. The simulations also show that an efficient strategy to decrease ozone concentrations in the SPMA would be to reduce total VOC emissions. The same strategy is not possible for NOx, as the reduction of these pollutants would increase ozone concentrations.  相似文献   

12.
Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25 ppb. The VOC/NOx ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NOx and NMVOCs were perturbed by ± 30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NOx-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NOx due to very high anthropogenic emissions.  相似文献   

13.
We measured wavelength-resolved ultraviolet (UV) irradiance in multiple indoor environments and quantified the effects of variables such as light source, solar angles, cloud cover, window type, and electric light color temperature on indoor photon fluxes. The majority of the 77 windows and window samples investigated completely attenuated sunlight at wavelengths shorter than 320 nm; despite variations among individual windows leading to differences in indoor HONO photolysis rate constants (JHONO) and local hydroxyl radical (OH) concentrations of up to a factor of 50, wavelength-resolved transmittance was similar between windows in residential and non-residential buildings. We report mathematical relationships that predict indoor solar UV irradiance as a function of solar zenith angle, incident angle of sunlight on windows, and distance from windows and surfaces for direct and diffuse sunlight. Using these relationships, we predict elevated indoor steady-state OH concentrations (0.80–7.4 × 106 molec cm−3) under illumination by direct and diffuse sunlight and fluorescent tubes near windows or light sources. However, elevated OH concentrations at 1 m from the source are only predicted under direct sunlight. We predict that reflections from indoor surfaces will have minor contributions to room-averaged indoor UV irradiance. These results may improve parameterization of indoor chemistry models.  相似文献   

14.
Cooking can release high concentrations of different air pollutants indoors, including particulate matter, polycyclic aromatic hydrocarbons (PAHs), and other gaseous pollutants such as volatile organic compounds (VOCs), oxides of carbon (COx), and oxides of nitrogen (NOx). Although some reviews have been conducted on emissions from cooking, they have not paid specific attention to Chinese cooking. Subsequent research, however, has focused on this aspect. We collected literature from 1995 to 2016 and summarized air pollutant emissions from Chinese cooking. We analyzed the characteristics of such pollutants based on different influential factors. It was found that the cooking method could have a predominant impact on emissions from Chinese cooking, and oil-based cooking produces air pollutants at much higher levels than water-based cooking. In addition, the use of gas stoves released more pollutants than electric stoves. Furthermore, the type and temperature of oil could have caused disparity in source strengths from the oil heating process. Ventilation patterns or the operation mode of range hoods could control indoor pollution levels. With more information focused on Chinese cooking emissions, we can propose more effective strategies for improving the indoor air environment in China.  相似文献   

15.
We reviewed 47 documents published 1967–2019 that reported measurements of volatile organic compounds (VOCs) on commercial aircraft. We compared the measurements with the air quality standards and guidelines for aircraft cabins and in some cases buildings. Average levels of VOCs for which limits exist were lower than the permissible levels except for benzene with average concentration at 5.9 ± 5.5 μg/m3. Toluene, benzene, ethylbenzene, formaldehyde, acetaldehyde, limonene, nonanal, hexanal, decanal, octanal, acetic acid, acetone, ethanol, butanal, acrolein, isoprene and menthol were the most frequently measured compounds. The concentrations of semi-volatile organic compounds (SVOCs) and other contaminants did not exceed standards and guidelines in buildings except for the average NO2 concentration at 12 ppb. Although the focus was on VOCs, we also retrieved the data on other parameters characterizing cabin environment. Ozone concentration averaged 38 ppb below the upper limit recommended for aircraft. The outdoor air supply rate ranged from 1.7 to 39.5 L/s per person and averaged 6.0 ± 0.8 L/s/p (median 5.8 L/s/p), higher than the minimum level recommended for commercial aircraft. Carbon dioxide concentration averaged 1315 ± 232 ppm, lower than what is permitted in aircraft and close to what is permitted in buildings. Measured temperatures averaged 23.5 ± 0.8°C and were generally within the ranges recommended for avoiding thermal discomfort. Relative humidity averaged 16% ± 5%, lower than what is recommended in buildings.  相似文献   

16.
The aim of this study was to evaluate the air quality of an indoor swimming pool, analyzing diurnal and seasonal variations in microbiological counts and chemical parameters. The results indicated that yeast and bacteria counts, as well as carbon dioxide (CO2), nitrogen oxides (NOx) and O3 concentrations, showed significant diurnal difference. On the other hand, temperature, relative humidity (R.H.), yeast counts and concentrations of CO2, particles, O3, toluene, and benzene showed seasonal differences. In addition, the relationship between indoor and outdoor air and the degree of correlation between the different parameters have been calculated, suggesting that CO2, fine particles and NOx would have indoor origin due to the human activity and secondary reactions favored by the chemical and environmental conditions of the swimming pool; while O3, benzene and toluene, would come from outside, mainly. The overall results indicated that indoor air quality (IAQ) in the swimming pool building was deficient by the high levels of CO2 and microorganisms, low temperatures, and high R.H., because frequently the limits established by the legislation were exceeded. This fact could be due to the poor ventilation and the inadequate operation of heating, ventilation, and air‐conditioning systems.  相似文献   

17.
Thermal conditions and indoor concentrations of aldehydes, volatile organic compounds (VOCs), and NO2 were investigated in 19 occupied temporary houses in 15 temporary housing estates constructed in Minamisoma City, Fukushima, Japan. The data were collected in winter, spring, and summer in January to July 2012. Thermal conditions in temporary log houses in the summer were more comfortable than those in pre‐fabricated houses. In the winter, the indoor temperature was uncomfortably low in all of the houses, particularly the temporary log houses. Indoor air concentrations for most aldehydes and VOCs were much lower than the indoor guidelines, except for those of p‐dichlorobenzene, acetaldehyde, and total VOCs. The indoor p‐dichlorobenzene concentrations exceeded the guideline (240 μg/m3) in 18% of the temporary houses, and the 10?3 cancer risk level (91 μg/m3) was exceeded in winter in 21% due to use of moth repellents by the occupants. Indoor acetaldehyde concentrations exceeded the guideline (48 μg/m3) in about half of the temporary houses, likely originating from the wooden building materials. Indoor NO2 concentrations in the temporary houses were significantly higher in houses where combustion heating appliances were used (0.17 ± 0.11 ppm) than in those where they were not used (0.0094 ± 0.0065 ppm).  相似文献   

18.
Accumulation of combustible biomass residues on hot surfaces of processing machineries can pose fire hazards. In addition, the presence of nitrogen oxides (NOx) from plant equipment alters the local conditions, aggravating the propensity for low temperature ignition risks. This study presents an experimental study on a relative effect of NOx on ignition temperature of morpholine, an important surrogate of biomass, to reveal the sensitising role of NOx in ignition of biomass fuels and to gain mechanistic insights into the chemical aspect of this behaviour in fire. The experiments employed a flow-through tubular reactor, operated at constant pressure and residence time of 1.01 bar and 1.0 s, respectively, and coupled with a Fourier-transform infrared spectroscope. For a representative fuel-rich condition (Φ=1.25), the concentration of NOx as small as 0.06% lowers the ignition temperature of morpholine by 150 °C, i.e., from approximately 500 °C to 350 °C. The density functional theory (DFT) calculations performed with the CBS-QB3 composite method, that comprises a complete basis set, characterised the dynamics and energies of the elementary nitration reactions. We related the observed reduction in ignition temperature to the formation of unstable nitrite and nitrate adducts, as the result of addition of NOx species to morphyl and peroxyl radicals. Furthermore, the reaction of NOx with low-temperature hydroperoxyl radical leads to the formation of active OH species that also propagate the ignition process. The present findings quantify the ignition behaviour of biomass under NOx–doped atmospheres. The result is of great importance in practical applications, indicating that safe operation of wood-working plants requires avoiding trace concentration of NOx within the vicinity of biomass residues. This can be facilitated by proper (and separate) venting of engine exhausts.  相似文献   

19.
Indoor air quality was characterized in 10 recently built energy‐efficient French schools during two periods of 4.5 days. Carbon dioxide time‐resolved measurements during occupancy clearly highlight the key role of the ventilation rate (scheduled or occupancy indexed), especially in this type of building, which was tightly sealed and equipped with a dual‐flow ventilation system to provide air refreshment. Volatile organic compounds (VOCs) and inorganic gases (ozone and NO2) were measured indoors and outdoors by passive techniques during the occupied and the unoccupied periods. Over 150 VOC species were identified. Among them, 27 species were selected for quantification, based on their occurrence. High concentrations were found for acetone, 2‐butanone, formaldehyde, toluene, and hexaldehyde. However, these concentrations are lower than those previously observed in conventional school buildings. The indoor/outdoor and unoccupied/occupied ratios are informative regarding emission sources. Except for benzene, ozone, and NO2, all the pollutants in these buildings have an indoor source. Occupancy is associated with increased levels of acetone, 2‐butanone, pentanal, butyl acetate, and alkanes.  相似文献   

20.
Nitrogen dioxide (NO2), a by‐product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three‐armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placement of air purifiers with high‐efficiency particulate air (HEPA) and carbon filters. Home inspection and NO2 monitoring were conducted at 1 week pre‐intervention and at 1 week and 3 months post‐intervention. Stove replacement resulted in a 51% and 42% decrease in median NO2 concentration at 3 months of follow‐up in the kitchen and bedroom, respectively (P = 0.01, P = 0.01); air purifier placement resulted in an immediate decrease in median NO2 concentration in the kitchen (27%, P < 0.01) and bedroom (22%, P = 0.02), but at 3 months, a significant reduction was seen only in the kitchen (20%, P = 0.05). NO2 concentrations in the kitchen and bedroom did not significantly change following ventilation hood installation. Replacing unvented gas stoves with electric stoves or placement of air purifiers with HEPA and carbon filters can decrease indoor NO2 concentrations in urban homes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号