首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sixteen under-reinforced high strength concrete one-way slabs were cast, heated at 600 °C for 2 h, repaired, and then tested under four-point loading to investigate the coupling effect of water recuring and repairing with advance composite materials on increasing the flexural capacity of heat-damaged slabs. The composites used included high strength fiber reinforced concrete layers; and carbon and glass fiber reinforced polymer (CFRP and GFRP) sheets. Upon heating then cooling, the reinforced concrete (RC) slabs experienced extensive map cracking, and upward cambering without spalling. Recuring the heat-damaged slabs for 28 days allowed recovering the original stiffness without achieving the original load carrying capacity. Other slabs, recured then repaired with steel fiber reinforced concrete (SFRC) layers, regained from 79% to 84% of the original load capacity with a corresponding increase in stiffness from 382% to 503%, whereas those recured then repaired with CFRP and GFRP sheets, regained up to 158% and 125% of the original load capacity with a corresponding increase in stiffness of up to 319% and 197%, respectively. Control, heat-damaged, and water recured slabs showed a typical flexural failure mode with very fine and well distributed hairline cracks, propagated from the repair layers to concrete compression zone. RC slabs repaired with SFRC layers failed in flexural through a single crack, propagated throughout the compression zone, whereas those repaired with CFRP and GFRP experience yielding failure of steel prior to the composites failure.  相似文献   

2.
A parameter-based acoustic emission (AE) technique is applied to AE signals acquired in physical experiments carried out on a series of predamaged reinforced concrete slabs. Three reinforced concrete slabs without shear reinforcement with dimensions of 1.50 × 1.50 × 0.23 m are subjected to cycles of a concentrated centric load with increasing peak values up to failure. The slabs had been previously exposed to impact loads in rockfall experiments and exhibit an unknown damage condition yet to be determined. Acoustic emissions are recorded during the loading and unloading cycles and evaluated. An analysis of load ratio and calm ratio associated with the Kaiser effect is performed. Damage classification is carried out successfully. Definitions of load ratio and calm ratio are reconsidered and specified. A static preloading of the slabs is approximated. The relationship between cracking process, failure mechanism and the acoustic emissions that occur is described and discussed.  相似文献   

3.
Cracking of cover concrete due to steel corrosion is one of the clear physical indicators of loss of service life of corroding RC structures. Its prediction is therefore very important for service life modelling of these structures. Models developed to predict the time to cover cracking assume that stresses due to steel corrosion follow the principles of a thick-walled cylinder under internal pressure. Considering the errors in the models, this paper contests the applicability of the thick-walled cylinder approach to model the time to cover cracking as well as the rate of lateral expansion of concrete after cover cracking using experimental results from 12 RC beams (153 × 254 × 3000 mm) corroded under a sustained load. It is shown in the paper that, contrary to the assumptions of uniform expansion made in the thick-walled cylinder approach, before cracking of the cover concrete, tensile strains are applied on the face of beams where corrosion agents are drawn whilst other faces are in compression. Corroded steel coupons are used to verify that this variation of strains is caused by the corrosion process not being uniformly distributed around the steel bar. It is also shown in the paper how cracking and location of cracks affects the rate of lateral deformation of concrete due to steel corrosion.  相似文献   

4.
Steel fiber-added reinforced concrete (SFRC) applications have become widespread in areas such as higher upper layers, tunnel shells, concrete sewer pipes, and slabs of large industrial buildings. Usage of SFRC in load-carrying members of buildings having conventional reinforced concrete (RC) frames is also gaining popularity recently because of its positive contribution to both energy absorption capacity and concrete strength.This paper presents experimental and finite element analysis of three SFRC beams. For this purpose, three SFRC beams with 250 × 350 × 2000 mm dimensions are produced using a concrete class of C20 with 30 kg/m3 dosage of steel fibers and steel class S420 with shear stirrups. SFRC beams are subjected to bending by a four-point loading setup in certified beam-loading frame, exactly after having been moist-cured for 28 days. The tests are with control of loads. The beams are loaded until they are broken and the loadings are stopped when the tensile steel bars are broken into two pieces. Applied loads and mid-section deflections are carefully recorded at every 5 kN load increment from the beginning till the ultimate failure.One of the SFRC beams modeled by using nonlinear material properties adopted from experimental study is analyzed till the ultimate failure cracks by ANSYS. Eight-noded solid brick elements are used to model the concrete. Internal reinforcement is modeled by using 3D spar elements. A quarter of the full beam is taken into account in the modeling process.The results obtained from the finite element and experimental analyses are compared to each other. It is seen from the results that the finite element failure behavior indicates a good agreement with the experimental failure behavior.  相似文献   

5.
Rehabilitation and strengthening of concrete structures with externally bonded fibre reinforced polymers (FRPs) has been a viable technique for at least a decade. An interesting and useful application is strengthening of slabs or walls where openings are introduced. In these situations, FRP sheets are very suitable; not only because of their strength, but also due to that they are easy to apply in comparison to traditional steel girders or other lintel systems. Even though many benefits have been shown by strengthening openings with FRPs not much research have been presented in the literature.In this paper, laboratory tests on 11 slabs with openings, loaded with a distributed load are presented together with analytical and numerical evaluations. Six slabs with openings have been strengthened with carbon fibre reinforced polymers (CFRPs) sheets. These slabs are compared with traditionally steel reinforced slabs, both with (four slabs) and without openings (one slab). The slabs are quadratic with a side length of 2.6 m and a thickness of 100 mm. Two different sizes of openings are used, 0.85 × 0.85 m and 1.2 × 1.2 m.The results from the tests show that slabs with openings can be strengthened with externally bonded CFRP sheets. The performance is even better than for traditionally steel reinforced slabs. The numerical and analytical evaluations show good agreement with the experimental results.  相似文献   

6.
Studies on two novel uses of hybrid structural members consisting of commercially produced glass reinforced pultruded ribbed fiber reinforced polymer (FRP) planks and concrete are discussed in this paper. Pultruded planks are produced by all the major pultruders in the world and are utilized primarily as decking for platforms. These highly optimized panels have the potential to be used in many other infrastructure applications, but their flexural stiffnesses have generally been too low to be used in highway and pedestrian bridges due to current span requirements. However, when used “compositely” with concrete or cementitious materials in a hybrid form they have the potential to be much more widely used. Two research studies conducted on two possible hybrid systems of different structural depths are discussed in this paper. The first study describes the use of pultruded planks as permanent formwork in highway bridge decks where the plank is used with concrete to produce a solid slab of 200 mm depth that is typical of slabs seen in highway bridge decks. The second study describes the use of pultruded planks in pedestrian bridge decks where the pultruded plank is used with a cement-board or a cast-in-place concrete panel to produce a hollow slab of 75 mm depth that is typical of timber decking used in FRP pedestrian bridges. Tests were conducted on beam-type specimens of the hybrid slabs to investigate the load transfer mechanisms between the pultruded plank and the cementitious “overlays” for both the 75 mm and 200 mm depths. From analysis of the load-carrying capacity and failure mechanisms of the hybrid slabs it was concluded that such hybrid slabs are viable systems for both highway and pedestrian bridge decks. A bridge deck using the 200 mm deep hybrid slab system was recently constructed on a highway in Wisconsin, USA.  相似文献   

7.
This paper presents experimental investigations on the thermal and mechanical behavior of composite floors subjected to ISO standard fire. Four 5.2 m×3.7 m composite slabs are tested with different combinations of the presence of one unprotected secondary beam, direction of ribs, and location of the reinforcement. The experimental results show that the highest temperature in the reinforcements occurs during the cooling phase (30–50 °C increment after 10-min cooling). The temperature at the unexposed side of the slabs is below 100 °C up to 100-min heating, compared to the predicted fire resistance close to 90 mins from EC4. For the slabs without secondary beams, the cracks first occur around the boundaries of the slab, while for the slabs supported by one unprotected secondary beam, concrete cracks first occur on the top of the slab above the beam due to the negative bending moment, and later on develop around boundaries. Debonding is observed between the steel deck and concrete slab. The secondary beam significantly impacts the deformation shape of tested slabs. Although a large deflection, 1/20 of the span length, is reached in the tests, the composite slabs can still provide sufficient load-bearing capacity due to membrane action. The occurrence of tensile membrane action is confirmed by the measured tensile stress in the reinforcement and compressive stress in the concrete. A comparison between measured and predicted fire resistance of the slabs indicates that EC4 calculations might be used for the composite slabs beyond the specified geometry limit, and the prediction is conservative.  相似文献   

8.
Before partial-depth repair using proper materials was implemented, Houston District of Texas Department of Transportation had to repair spalls and punchout constantly in the Continuously Reinforced Concrete Pavement (CRCP) pavements on US290 and SH6. The full-depth repair to address the cracking on US75 did not work well. Spalls, wide, cracks and punchouts due to mid-depth horizontal cracks represent functional and structural distresses in Portland cement concrete pavement. Traditionally, these distresses were repaired by partial-depth repair (PDR). The performance of PDR varies substantially. Two types of polymeric patch materials were used to repair the distresses. Material A is polyurethane-based and Material B is epoxy-based. Material A was used to repair spalls in CRCP. It provided quite satisfactory performance for more than 9 years. Material B was used to repair cracks in jointed concrete pavement and CRCP. Its performance was satisfactory when applied to stable slabs and the loose concrete was completely removed. Compared to full-depth repair (FDR), PDRs utilizing polymeric patch materials are much more cost-effective, and PDR takes much less time than FDR. It is believed that both chip-and-patch and saw-and-patch methods would work as long as the delaminated areas are completely removed and the concrete slabs are stable (e.g. no settlement or movement under moving trucks).  相似文献   

9.
The utilisation of waste materials in the construction industry is an effective way to sanitise the environment and reduces the cost of construction. In this research, palm oil clinker (POC) aggregates was used to fully replace normal aggregates to produce structural lightweight concrete. This concrete was used in the construction of composite slabs with profiled steel sheet. A total of eight full scale composite slabs, six palm oil clinker concrete (POCC) slabs and two conventional concrete slabs were constructed and tested in accordance to Eurocode 4: Part 1.1 and BS 5950: Part 4: 1994. Two shear spans were used, 450 mm for short shear span and 900 mm for long shear span. The structural behaviour of the slabs was investigated and compared. The horizontal shear-bond strength between the concrete and the steel was determined according to two methods; mk and partial shear connection methods. Test results show that the structural behaviour and the horizontal shear-bond strength of the POCC slabs are nearly similar to the conventional concrete slabs. The mechanical interlock (m) and the friction (k) between the steel and the concrete are 117.67 N/mm2 and 0.0973 N/mm2, respectively and the design horizontal shear-bond strength using m-k and PSC methods is 0.248 N/mm2 and 0.215 N/mm2, respectively. The difference between the two methods is 13.3%. POCC is therefore suitable to be used for structural applications with a reduction in weight of 18.3% compared to conventional concrete composite slabs.  相似文献   

10.
《Soils and Foundations》2007,47(3):517-532
The objective of this paper is to examine the influence of geogrid layer on the integrity of clay liners of landfills. A series of centrifuge model tests were performed on model clay liners subjected to non-uniform settlements with and without a geogrid layer embedded within the top one-third portion of the clay liner moist-compacted on the wet side of its optimum moisture content at 40 g. The model clay liner material has been selected in such a way that it envelopes the material characteristics of the clay liners, which are used for constructing an impermeable barrier in a lining system. By maintaining type and location of the geogrid within the clay liner as constant, the thickness of clay liner is varied to check the possibility of reducing the thickness of a geogrid reinforced clay liner. Digital image analysis technique was employed to ascertain the initiation of cracking and to compute strains both on the surface and along the cross-section of the clay liner with and without any geogrid layer. It was observed that clay liners compacted at moulding water content towards wet side of their OMC found to experience multiple cracking at the onset of non-uniform settlements. Contrary to this, geogrid reinforced clay liner was observed to sustain large distortions and experience only tiny cracks limited up to a location of a geogrid. With an increase in thickness of the clay liner reinforced with a geogrid, geogrid reinforced compacted clay liner was observed to retain its integrity and restrains cracking completely.  相似文献   

11.
An experimental study was conducted to evaluate the effect of concrete aggregate gradation, water–cement ratio, and curing time on measured ultrasonic wave velocity (UPV). 30 × 30 × 10 cm Portland cement concrete slabs were cast for ultrasonic evaluation, while 10 cm diameter by 20 cm height cylinders were cast for compressive strength evaluation The slabs and cylinders were prepared using Portland cement and limestone aggregate. Two slabs were cast from each combination of coarse aggregate gradations and water cement ratio (0.40, 0.45, 0.50, and 0.55). Four ASTM gradations were considered, ASTM No: 8, 67, 56, and 4. These gradations have nominal maximum aggregate size 25, 4.75, 19.3, and 12.5 mm, respectively.The ultrasonic equipment used in this study was the portable ultrasonic non-destructive digital indicating tester (PUNDIT) with a generator having an amplitude of 500 V producing 54 kHz waves. The time needed to transfer the signal between the transducers was recorded and used to calculate the signal velocity, which was used as a parameter in the evaluation. Ultrasonic measurements were performed at 3, 7, 28, and 90 days after concrete casting.The results of the analysis indicated that water–cement ratio was found to have a significant effect on UPV. The UPV was found to decrease with the increase of water cement ratio. Aggregate gradation was also found to have significant effect on UPV. In general, the larger the aggregate size used in preparing Portland cement concrete, the higher the measured velocity of ultrasonic waves. Also, UPV was found to be increased as concrete curing time increased. Concrete compressive strength was found to be significantly affected by water–cement ratio and coarse aggregate gradation. Lower water–cement ratio produced higher concrete strength. Also, the concrete compressive strength increased as maximum aggregate size decreased.  相似文献   

12.
This paper deals with the analysis of the blast bearing capacity of reinforced concrete hollow core slabs when they are subjected first to fire and then to a blast load. The paper first analyzes the blast behavior of a hollow core slab without fire, for two charges, one that leads to elastic dynamic response and the other that causes plastic behavior and severe concrete cracking. The same blast analysis is repeated for slabs that had been subjected to fire. The paper is limited to temperatures up to 450 °C at the concrete surface. A discussion of the experimental setup for full scale experiments is presented and the experimental results are compared with simplified numerical models solved with the software LS-DYNA. The paper discusses many difficulties in obtaining a reliable numerical model. The software typically permits to analyze transient phenomena such as an explosion, where material properties change very rapidly (on the level of milliseconds). On the other hand, fire does not change material and structural properties that fast. The solution of this difficulty is offered by the preliminary analysis of the changes of material properties due to fire, which allows determining the proper input for the numerical blast analysis by means of LS-DYNA. The most important conclusion of the analysis is that crack patterns and blast load dynamic responses are indeed altered by fire with temperatures up to 450 °C; the eigenfrequency is reduced and the maximum dynamic deformation increases. Yet, within the limitations of the assumptions concerning boundary conditions, the examined slabs keep their blast bearing capacity after blast load scenarios up to 1.5 kg C4 with at 1 m stand off distance.  相似文献   

13.
The effect of different environmental conditions on the creep behavior of concrete beams reinforced with glass fiber reinforced polymer (GFRP) bars under sustained loads is investigated. This is achieved through testing concrete beams reinforced with GFRP bars and subjected to a stress level of about 20–25% of the ultimate stress of the GFRP bars. Reference beams were loaded in the temperature-controlled laboratory (24 ± 3 °C). Other test beams were either completely or partially immersed in different environments (tap-water and sea-water) at elevated temperature (40 ± 2 °C) to accelerate the reaction. During the exposure period, which lasted for ten months, strains in concrete and GFRP bars as well as the midspan deflections were recorded for all considered environmental conditions. The results show that the creep effect due to sustained loads was significant for all environments considered in the study and the highest effect was on beams subjected to wet/dry cycles of sea-water at 40 ± 2 °C.  相似文献   

14.
This research evaluates the physical and mechanical properties of Portland cement masonry blocks reinforced with lechuguilla natural fibers, that were lightened with 2-l bottles of polyethylene terephthalate.A concrete mix was designed for a target compressive strength of 16 MPa at 28 days, and slump of 70 mm. Masonry concrete blocks with dimensions of 730 × 340 × 130 mm were produced for two different fiber lengths (25 and 50 mm) and with fiber contents of 0.25%, 0.50%, 0.75% and 1.0%.Based on the obtained results, it was found that as the aspect ratio decreases the compressive strength increases and that the use of natural fiber (Vf = 0.5–0.75%) improves masonry post-cracking features, showing a ductile behavior and generating a uniform cracking pattern in the longitudinal sides of the blocks.  相似文献   

15.
Investigating the structural response of reinforced concrete beam-column sub-assemblies at elevated temperatures is the purpose of this paper. This goal was achieved by conducting the ISO-834 standard fire test on two identical one-third scaled reinforced concrete beam-column subassemblage test specimens. The test specimens, which each consisted of one reinforced concrete cantilever beam anchored at the mid-height of a reinforced concrete column, were installed together in a full scale furnace and subjected to downward and upward service loads, respectively. The fire compartment fully engulfed the cantilever beams (except the beams’ top face and the loading points), the beam-column connections and the lower columns. The fire test terminated after 74 min as soon as the tensile longitudinal steel bars of the upward-loaded cantilever beam attained the predefined critical temperature 530 °C. The lower columns exhibited partial concrete spalling and typical diagonal cracks appeared at the beam-column connections. Based on the recorded internal temperature distributions at the joint cores it was found that the material strength loss in the fire had insignificant impact on the load bearing mechanism of the joints. On the other hand, the gradual decrease in rotation capacity of the beam ends during the fire course considerably influenced the load-deflection relationship. A detailed numerical work has been carried out to simulate the response of the test specimens and will be published elsewhere.  相似文献   

16.
This paper presents the test results on cracking behavior at medium age of uniaxially restrained specimens containing different types of mineral admixture, namely fly ash and limestone powder. In this study, the uniaxially restrained shrinkage, free shrinkage and strength tests were conducted to study the potential of cracking of concrete under restrained shrinkage condition. The influences of water to binder ratio, mineral admixtures and curing period of concrete on cracking behavior were investigated in this study. The investigation showed that cracking age and cracking strain of restrained specimens vary with mix proportion, mineral admixture and curing period. The potential of shrinkage cracking is not influenced only by cracking strain and amount of shrinkage but also on shrinkage rate and tensile creep. Mixture with lower water to binder ratio (w/b = 0.35) shows shorter cracking age than the mixture with higher water to binder ratio (w/b = 0.55). Fly ash and limestone powder significantly increase cracking age of concrete. The cracking age increases with the increase of the replacement ratio of fly ash. The higher shrinkage rate, when exposed to drying, of mixture with longer curing period leads to shorter cracking age.  相似文献   

17.
为了解GFRP筋地下连续墙的受弯性能,通过GFRP筋混凝土板和钢筋混凝土板的对比受弯试验,分析了两者的受力-变形过程和破坏形态,对比了两者的挠度、开裂荷载、极限荷载以及混凝土应变。结果表明:GFRP筋混凝土板的受力-变形曲线大致可划分为开裂前和开裂后两个阶段,其破坏表现为脆性;混凝土开裂前两种板的截面应变变化规律均基本符合平截面假定,但开裂后GFRP筋混凝土板的挠度增长速率远大于钢筋混凝土板,且该速率基本不变;两种板的开裂荷载较为接近,而GFRP筋混凝土板的极限荷载为钢筋混凝土板的1.2倍。在试验基础上,建立了GFRP筋混凝土板的有限元模型,通过参数分析表明,GFRP筋混凝土板的抗弯刚度在开裂后随配筋率的增大而增大。图13表6参8  相似文献   

18.
《Fire Safety Journal》2001,36(5):459-475
This paper quantifies the thermal movements of 14 simply supported precast reinforced concrete floor slabs of 4.5 m span and 900 mm width exposed to two standardised heating regimes used in fire resistance furnace tests. The tests were designed to show the effect of varying the slab thickness, type of concrete, imposed load, soffit protection and nature of fire exposure on the mid-span flexural deflection and axial movements of the slab ends. Measured deflections showed that during the 90 min design period of fire resistance thermal bowing was dominant and the effect of the 1.5 kN/m2 design imposed load was small. The NPD hydrocarbon fire exposure caused a doubling of the flexural deflections achieved using the standard BS 476: Part 8 (now Part 20) fire exposure in the first 20 min of exposure.  相似文献   

19.
This paper presents an experimental study investigating the behavior of FRP-reinforced concrete bridge deck slabs under concentrated loads. A total of eight full-scale deck slabs measuring 3000-mm long by 2500-mm wide were constructed. The test parameters were: (i) slab thickness (200, 175 and 150 mm); (ii) concrete compressive strength (35–65 MPa); (iii) bottom transverse reinforcement ratio (1.2–0.35%); and (iv) type of reinforcement (GFRP, CFRP, and steel). The slabs were supported on two parallel steel girders and were tested up to failure under monotonic single concentrated load acting on the center of each slab over a contact area of 600 × 250 mm to simulate the footprint of sustained truck wheel load (87.5 kN CL-625 truck). All deck slabs failed in punching shear. The punching capacity of the tested deck slabs ranged from 1.74 to 3.52 times the factored load (Pf) specified by the Canadian Highway Bridge Design Code (CHBDC) CAN/CSA S6-06. Besides, the ACI 440.1R-06 punching strength equation greatly underestimated the capacity of the tested slabs with an average experimental-to-predicted punching capacity ratio (Vexp/Vpred) of 3.17.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号