首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
《Energy and Buildings》2002,34(1):25-31
The paper compares effects on thermal performance and energy use of various pre-cooling and ventilation strategies, which might be used for reducing peak power demands in typical office buildings located in moderately warm climatic regions. Simulations were performed for different features of the building envelope, and for two levels of internal heat load.Results indicate: significant reductions of required daytime peak power loads may be obtained by cooling strategies that contribute to lowering internal mass temperatures. For buildings with large internal heat loads, intensive night pre-cooling is the most effective strategy for smoothing required power loads. However, for non-loaded buildings, it largely increases total energy loads, and night-time peak power loads. Intensive night ventilation reduces required peak power loads as well as total cooling energy loads for both building types. For non-loaded buildings, it is an extremely efficient strategy, whereas the efficacy of other pre-cooling strategies is highly questionable. Further research should include secondary effects (on required peak power loads, total energy loads, and electricity consumption) as they may decrease the efficiency differences between the two strategies.  相似文献   

2.
In this paper, we develop an agent-based model which integrates four important elements, i.e. organisational energy management policies/regulations, energy management technologies, electric appliances and equipment, and human behaviour, to simulate the electricity consumption in office buildings. Based on a case study, we use this model to test the effectiveness of different electricity management strategies, and solve practical office electricity consumption problems. This paper theoretically contributes to an integration of the four elements involved in the complex organisational issue of office electricity consumption, and practically contributes to an application of an agent-based approach for office building electricity consumption study.  相似文献   

3.
In the US, buildings represent around 40% of the primary energy consumption and 74% of the electrical energy consumption [U.S. Department of Energy (DOE). 2012. 2011 Buildings Energy Data Book. Energy Efficiency & Renewable Energy]. Incentives to promote the installation of on-site renewable energy sources have emerged in different states, including net metering programmes. The fast spread of such distributed power generation represents additional challenges for the management of the electricity grid and has led to increased interest in smart control of building loads and demand response programmes. This paper presents a general methodology for assessing opportunities associated with optimal load management in response to evolving utility incentives for residential buildings that employ renewable energy sources and energy storage. An optimal control problem is formulated for manipulating thermostatically controlled domestic loads and energy storage in response to the availability of renewable energy generation and utility net metering incentives. The methodology is demonstrated for a typical American house built in the 1990s and equipped with a single-speed air-to-air heat pump, an electric water heater and photovoltaic (PV) collectors. The additional potential associated with utilizing electrical batteries is also considered. Load matching performance for on-site renewable energy generation is characterized in terms of percentage of the electricity production consumed on-site and the proportion of the demand covered. For the purpose of assessing potential, simulations were performed assuming perfect predictions of the electrical load profiles. The method also allows determination of the optimal size of PV systems for a given net metering programme. Results of the case study showed significant benefits associated with control optimization including an increase of load matching between 3% and 28%, with the improvement dependent on the net metering tariff and available storage capacity. The estimated cost savings for the consumer ranged from 6.4% to 27.5% compared to no optimization with a unitary buy-back ratio, depending on the available storage capacity. Related reduction in CO2 emissions were between 11% and 46%. Optimal load management of the home thermal systems allowed an increase in the optimal size of the PV system in the range of 13–21%.  相似文献   

4.
The significant and continuous increment in the global electricity consumption is asking for energy saving strategies. Efficient control for heating, ventilation and air-conditioning systems (HVAC) is the most cost-effective way to minimize the use of energy in buildings. In this framework, an energy management and control system (EMCS) has been developed to schedule electricity end-uses in the campus of the Universidad Politécnica de Valencia (UPV), Spain. This paper presents an evaluation performed by using the EMCS of different control strategies for HVAC split systems. It analyzed the effect of different schedules for a common air-conditioning device and demand response strategies are tested in several situations. The economic saving is calculated taking into account the electricity contract clauses. Finally, a test is made for the control of a group of similar devices in order to reduce the maximum peak power in consumption and to obtain a flexible load shape with the HVAC loads. The studies are then extrapolated to a larger system, the whole University campus, for which energy and economic savings are quantified.  相似文献   

5.
A great amount of world energy demand is connected to the built environment. Electricity use in the commercial buildings, accounts for about one-third of the total energy consumption in Turkey and fully air-conditioned office buildings are important commercial electricity end-users since the mid-1990s. In the presented paper, the interactions between different conditions, control strategies and heating/cooling loads in office buildings in the four major climatic zones in Turkey – hot summer and cold winter, mild, hot summer and warm winter, hot and humid summer and warm winter – through building energy simulation program has been evaluated. The simulation results are compared with the values obtained from site measurements done in an office building located in Istanbul. The site-recorded data and simulation results are compared and analyzed. This verified model was used as a means to examine some energy conservation opportunities on annual cooling, heating and total building load at four major cities which were selected as a representative of the four climatic regions in Turkey. The effect of the parameters like the climatic conditions (location), insulation and thermal mass, aspect ratio, color of external surfaces, shading, window systems including window area and glazing system, ventilation rates and different outdoor air control strategies on annual building energy requirements is examined and the results are presented for each city.  相似文献   

6.
In this study we explore the effects of end-use energy efficiency measures on different district heat production systems with combined heat and power (CHP) plants for base load production and heat-only boilers for peak and medium load productions. We model four minimum cost district heat production systems based on four environmental taxation scenarios, plus a reference district heat system used in Östersund, Sweden. We analyze the primary energy use and the cost of district heat production for each system. We then analyze the primary energy implications of end-use energy efficiency measures applied to a case-study apartment building, taking into account the reduced district heat demand, reduced cogenerated electricity and increased electricity use due to ventilation heat recovery. We find that district heat production cost in optimally-designed production systems is not sensitive to environmental taxation. The primary energy savings of end-use energy efficiency measures depend on the characteristics of the district heat production system and the type of end-use energy efficiency measures. Energy efficiency measures that reduce more of peak load than base load production give higher primary energy savings, because the primary energy efficiency is higher for CHP plants than for boilers. This study shows the importance of analyzing both the demand and supply sides as well as their interaction in order to minimize the primary energy use of district heated buildings.  相似文献   

7.
李云建 《建筑电气》2007,26(10):16-18
就高层智能写字楼物业管理的节约用电途径进行了分析探讨,提出一些具体的节电措施:工程项目建设期间提前介入;合理用电评估;高峰时段合理调整用电负荷;加强设备和设施的运行管理和维护管理;完善计量设施的智能化管理。  相似文献   

8.
The Hong Kong climate is sub-tropical with hot and humid weather from May to September and temperate climate for the remaining 7 months period. A mechanical ventilation and air-conditioning (MVAC) system is usually operated to avoid the high temperatures resulting in high peak cooling loads. The facade design has a significant influence on the energy performance of office buildings. This work evaluates different ventilated facade designs in respect to energy savings.Thermal building simulations (TRNSYS) were linked to nodal airflow network simulations (COMIS) for detailed ventilated double-skin facade performance. In order to validate the model, simulations were carried out for an office building in Lisboa; the results were compared with measured data from the same building. The simulation results of surface and air temperatures show good agreement with the measurements. The results of the study can be used to reduce surface temperatures by using different materials for the roller blind that is positioned in the cavity of the double-skin facade. The results can further be used to reduce the high peak cooling loads during the summer period. This may result in significant energy savings and a reduction in the system's cooling capacity. It proved that a careful facade design can play an important role in highly glazed buildings and provides potential for energy efficiency.  相似文献   

9.
We investigate greenhouse emissions of office workers in Sydney, drawing on census data, national building energy benchmarks as well as journey-to-work and energy data from two study buildings. Comparing work locations in the central business district (CBD) and Macquarie Park Corridor with metro-wide averages, we find that building emissions dominate over commuting emissions across the city, but commuting is increasingly important as building energy efficiency increases. Furthermore, our results indicate that efforts to improve a building's energy efficiency at Macquarie Park are largely negated by high reliance on car travel despite the introduction of the Epping–Chatswood train line. We conclude that improving building energy efficiency, office space utilisation and network connectivity (currently evident only in the CBD) delivers the best opportunity to reducing the carbon cost of workplaces.  相似文献   

10.
A complete analysis of the cost-effectiveness of daylighting strategies should include the impact of daylighting on peak electrical demand as well as on energy consumption. We utilized an hour-by-hour building energy analysis program to study the thermal and daylighting impacts of fenestration on peak demand. Fenestration properties and lighting system characteristics were varied parametrically for office buildings in Madison WI and Lake Charles LA. Peak electrical demand was disaggregated by component and by zone, monthly patterns of peak demand were examined, and impacts of fenestration performance on chiller size were studied.The results suggest that for daylighted office buildings, the peak electrical demand results from a complex trade-off between cooling load due to fenestration parameters, lighting load reductions due to glazing and lighting system characteristics. Lowest peak demands generally occur with small to moderate size apertures. With daylighting, peak electrical demand is reduced by 10 to 20% for the building configuration studied (37% perimeter zone, 63% core zone). This work indicates that solar gain through fenestration must be effectively controlled in order to realize the potential of daylighting to significantly reduce peak electrical demand.  相似文献   

11.
《Energy and Buildings》2005,37(11):1132-1146
The reduction of greenhouse gas emissions in the building sector to a sustainable level will require tremendous efforts to increase both energy efficiency and the share of renewable energies. Apart from the lowering of energy demand through better insulation and fenestration, small combined heat and power (micro-cogeneration) systems may help improve the situation on the supply side by cutting both the non-renewable energy demand for residential buildings and peak loads in the electric grid. Though still on the brink of market entry, fuel cells are the focus of interest as the prime technology for such systems. In this study, a methodology for assessing the performance of such systems in terms of primary energy demand and the CO2 emissions by transient computer simulations is established, and demonstrated for a natural gas driven solid oxide fuel cell (SOFC) and, to a lesser extend, a polymer electrolyte fuel cell (PEFC) home fuel cell cogeneration system. The systems were evaluated for different grid electricity generation mix types and compared to traditional gas boiler systems. The interaction with hot water storage and solar thermal collectors, and the impact of storage size and predictive control was analyzed. Typical heat and electricity demand load profiles for different types of residential buildings and occupancy were considered, and the sizing of the fuel cell system in relation to the heat demand of the building was analyzed. Primary energy savings decline for cases with lower heat demand and for cases with solar thermal systems, and peak for fuel cell systems sized in accordance with the heat demand of the building. Future assessments of fuel cell systems will need a refined methodology, and depend on realistic performance characteristics and models that accurately consider dynamic conditions.  相似文献   

12.
随着建筑围护结构保温性能的逐步提高,以室内人员为代表的内部因素已成为影响建筑负荷的重要不确定性因素,内部负荷扰量(简称内扰)在空调负荷设计中的重要性需要被强调。通过对两栋办公建筑的实地测试发现,办公建筑中人员在室率普遍只有设计人数的40%~60%,设备的实际功率也远低于20 W/m~2的概算指标,过大的经验值是造成机组选型偏大的重要原因。重新思考标准中的人员密度系数和设备使用密度系数,以人为核心将建筑内扰负荷结合起来,提出"代表人"的内扰负荷计算方法,并对案例建筑的负荷设计进行修正。相比最大实测冷负荷,修正后的设计冷负荷富余率均在10%以内。  相似文献   

13.
Load shedding enjoys increasing popularity as a way to reduce power consumption in buildings during hours of peak demand on the electricity grid. This practice has well known cost saving and reliability benefits for the grid, and the contracts utilities sign with their “interruptible” customers often pass on substantial electricity cost savings to participants. Less well-studied are the impacts of load shedding on building occupants, hence this study investigates those impacts on occupant comfort and adaptive behaviors. It documents experience in two office buildings located near Philadelphia (USA) that vary in terms of controllability and the set of adaptive actions available to occupants. An agent-based model (ABM) framework generalizes the case-study insights in a “what-if” format to support operational decision making by building managers and tenants. The framework, implemented in EnergyPlus and NetLogo, simulates occupants that have heterogeneous thermal and lighting preferences. The simulated occupants pursue local adaptive actions such as adjusting clothing or using portable fans when central building controls are not responsive, and experience organizational constraints, including a corporate dress code and miscommunication with building managers. The model predicts occupant decisions to act fairly well but has limited ability to predict which specific adaptive actions occupants will select.  相似文献   

14.
Understanding what constitutes peaks and identifying areas of effective load shifting intervention becomes vital to the balancing of demand and supply of electricity. Whilst there is information about the aggregate level of consumption of electricity, little is known about residential peak demand and what levels of flexibility might be available. Specifically, methodologies linking people's activities and residential electricity load profiles are typically under-investigated. The overall aim of this paper is to introduce methodologies which capture the variation in sequences of activities taking place at times of peak electricity demand. The paper introduces a set of analytical tools which can be deployed when examining time use survey data in energy demand research. It presents the state of the art with modelling load profiles based on time use data and design methodological modifications to improve modelling around peak periods. It is demonstrated how the methodologies presented in the paper can be applied to specific understanding of distributional effects of Time of Use tariffs. The paper discusses issues associated with validation between synthetic data, survey data and electricity metered data and concludes with policy implications and some observations for future research.  相似文献   

15.
针对广东省开展的用电指标工作,分析了当前建筑节能工作的瓶颈,论证了控制建筑用电负荷对新建建筑节能的关键作用,结合既有建筑的耗能统计数据和相关标准,给出了用电指标的建议数值。  相似文献   

16.
Latent heat thermal energy storage (LHTES) is becoming more and more attractive for space heating and cooling of buildings. The application of LHTES in buildings has the following advantages: (1) the ability to narrow the gap between the peak and off-peak loads of electricity demand; (2) the ability to save operative fees by shifting the electrical consumption from peak periods to off-peak periods since the cost of electricity at night is 1/3–1/5 of that during the day; (3) the ability to utilize solar energy continuously, storing solar energy during the day, and releasing it at night, particularly for space heating in winter by reducing diurnal temperature fluctuation thus improving the degree of thermal comfort; (4) the ability to store the natural cooling by ventilation at night in summer and to release it to decrease the room temperature during the day, thus reducing the cooling load of air conditioning. This paper investigates previous work on thermal energy storage by incorporating phase change materials (PCMs) in the building envelope. The basic principle, candidate PCMs and their thermophysical properties, incorporation methods, thermal analyses of the use of PCMs in walls, floor, ceiling and window etc. and heat transfer enhancement are discussed. We show that with suitable PCMs and a suitable incorporation method with building material, LHTES can be economically efficient for heating and cooling buildings. However, several problems need to be tackled before LHTES can reliably and practically be applied. We conclude with some suggestions for future work.  相似文献   

17.
Variations in operational use (in the time domain) and in design and use (between buildings) are critical for district systems. The effects on energy use of behavioural (stochastic profiles of occupancy and end uses) and physical variations (size, orientation, insulation and air tightness) amongst many buildings is examined. Rather than investigating just the variability of these factors, the aim is to identify subsequent impacts on building energy use. To achieve this, dynamic building energy simulations in EnergyPlus are performed. Results include total demands and their distributions, and temporal and probabilistic profiles. Very large variations in total heating demand are noted. Temporal profiles show changes in peak loads, load durations and periods of zero load. Probabilistic profiles and cumulative distributions show that a few buildings are responsible for the majority of total loads. Full detailed simulations are identified as critical when assessing temporal effects such as peak loads and storage sizing.  相似文献   

18.
《Energy and Buildings》2005,37(6):663-671
There are varieties of physical and behavioral factors to determine energy demand load profile. The attainment of the optimum mix of measures and renewable energy system deployment requires a simple method suitable for using at the early design stage. A simple method of formulating load profile (SMLP) for UK domestic buildings has been presented in this paper. Domestic space heating load profile for different types of houses have been produced using thermal dynamic model which has been developed using thermal resistant network method. The daily breakdown energy demand load profile of appliance, domestic hot water and space heating can be predicted using this method. The method can produce daily load profile from individual house to urban community. It is suitable to be used at Renewable energy system strategic design stage.  相似文献   

19.
This paper studies the optimal control of a commercial building's thermostatic load during off-peak hours as an ancillary service to the power grid. It provides an algorithmic framework that commercial buildings can implement to cost-effectively increase their electricity demand at night while they are unoccupied, instead of using standard inflexible setpoint control. Consequently, there is minimal or no impact on user comfort, while the building manager gains an additional income stream from providing the ancillary service. By introducing a novel benefit-cost ratio of ancillary service payment to night-time price of electricity, we are able to study the building's capability to provide a service that is both useful to the power grid and profitable to the building manager. Numerical results show that there can be an economic incentive to participate even if the payment rate for the ancillary service is less than the price of electricity.  相似文献   

20.
廖满英  叶充 《建筑电气》2014,(4):212-217
从商务办公楼的冷源、照明、电梯、景观照明等负荷的特点入手,结合用电量统计数据及变压器的特性.对商务办公楼的负荷计算、变压器损耗进行分析.得出变压器在不影响运行可靠性的情况下采用大容量少台数比小容量多台数节能的结论.同时给出商务办公楼负荷计算相关系数取值及变压器配置的一些建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号