首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 144 毫秒
1.
单级超高复合加筋土挡墙的原型观测   总被引:7,自引:0,他引:7  
对一座联合应用3种加筋材料(混凝土拉筋、钢塑复合土工带拉筋以及双向上工格栅)的单级超高加筋土挡墙的拉筋拉力、填土沉降、墙面板土压力和基底压力进行了施工期间的原型观测,对拉筋拉力随填土厚度变化的规律、墙面板所受土压力、基底压力、填土沉降量变化和分布规律及其影响因素等进行了分析研究。  相似文献   

2.
某河道护岸工程加筋土挡墙的原型观测   总被引:2,自引:0,他引:2  
通过对某河道护岸工程加筋土挡墙的筋带拉力、面板土压力、基底压力、填土分层沉降、面板水平位移以及潮位变化等进行施工期间的原型观测 ,分析并研究了筋带拉力、面板土压力和基底压力随填土厚度变化的规律 ,以及填土分层沉降、面板水平位移以及潮位变化的分布规律及其影响因素  相似文献   

3.
三峡工程库区巫山县加筋土挡墙离心模型试验研究   总被引:8,自引:3,他引:8  
将离心模拟技术应用于三峡工程库区巫山县高度为57m超高加筋土挡墙研究中,对加筋土挡墙墙背土压力分布规律和拉筋的拉力分布规律进行系统研究。特别是精心设计出离心模型试验中三级挡墙的面板与拉筋的联结,较真实地反映了实际工程中加筋土挡墙整体复合结构的力学特性,较详细地介绍了实验模型的制作和实施过程。试验表明,加筋土挡墙墙背土压力随墙高呈两头小、中间大的分布规律,即土压力先随加筋填土深度的增大而增加,达到最大值后便开始减小,并非沿着墙高从顶到底线性增大。拉筋的拉力随着加荷量的增大而增加;拉筋拉力随加荷时间的增长呈动态变化,且出现了两个峰值点。研究成果对探讨加筋土挡墙受力机制、指导移民工程建设具有重要意义。  相似文献   

4.
在深圳河道治理工程中,由于一侧施工场地环境受到限制,因此采用一座总墙高为7.7m的新型挡土结构——钢带式加筋土挡墙起支挡围护的作用。为了研究挡墙墙体的水平位移、基底土压力和墙背侧向土压力以及拉筋筋带受力的分布规律,对该挡墙的变形和受力情况进行了现场原位观测,得到了水平位移、基底土压力和墙背侧向土压力以及筋带拉力的变化和分布规律,研究结果可供今后类似挡墙结构的设计和研究以及监测提供参考。  相似文献   

5.
水平柔性拉筋式重力墙是一种新型耐震结构,为研究墙后地震土压力,运用拟静力法并基于塑性极限分析上限原理,采用平面滑动破坏机构,考虑拉筋拔出和拉断两种破坏模式,推导墙后地震土压力的计算公式,并通过数值模拟方法进行验证,且讨论了填土内摩擦角、黏聚力、墙背外摩擦角、拉筋间距、极限拉力以及拉筋长度对地震土压力的影响特征。实例分析结果表明:随填土强度参数的增大地震土压力总体呈非线性减小,墙背外摩擦角对地震土压力的影响较小;随拉筋竖向间距增大,土压力呈非线性增大,但增幅渐小;拉筋极限拉力达到一定值后,对土压力没有影响;随拉筋长度在一定范围内的增加,墙后土压力逐渐减小。  相似文献   

6.
超高无面板式土工格栅加筋路堤现场试验研究   总被引:1,自引:0,他引:1  
结合在建宜巴高速公路50 m高的加筋填土断面进行现场试验,对超高无面板式土工格栅加筋路堤的格栅变形、垂直土压力、水平土压力、分层沉降以及深层水平位移等内容进行了近2 a的测试,研究超高无面板式土工格栅加筋土路堤的受力、变形规律,分析了其作用机理。结果表明:不同层位土工格栅的最大拉应变出现在离返包面约4~6 m处,格栅应变沿筋长呈双峰值分布,施工期土工格栅应变具有明显的滞后性,且工后1.5 a格栅出现明显的收缩回弹;土工格栅的存在对土压力分布具有明显的调整作用,格栅末端附近实测垂直土压力值略超过理论值,中间和近坡面部位实测土压力值小于理论值;水平土压力沿路堤高度呈非线性形式分布,路堤中部的水平土压力值略大于顶部,其值小于主动土压力;分层沉降量在施工期存在较大波动,在垂直高度上,上部和底部偏小,中下部偏大;深层水平位移随着深度的增加逐渐减小,填土结束后深层水平位移仍有一定程度增大。  相似文献   

7.
为了研究返包式土工格栅加筋土高挡墙结构的受力、变形状态,分析其作用机理,进行了包括加筋土墙体基底应力、墙背侧向土压力、拉筋拉力和墙面水平变形等内容的现场试验,研究了加筋土墙体基底垂直应力、不同层位的拉筋拉力沿筋长的分布规律,加筋土挡墙潜在的破裂面位置,墙背侧向土压力沿墙高的分布规律以及墙面水平变形规律。测试结果表明,加筋土挡墙基底垂直土压力沿土工格栅拉筋长度方向呈非线性分布,最大值发生在拉筋中部附近,向拉筋两端方向逐渐减少;实测墙背侧向土压力沿墙高呈非线性形式分布,其值小于主动土压力;上部墙体拉筋应变沿筋长呈单峰值分布,下部墙体拉筋应变沿筋长呈双峰值分布;上部墙体潜在破裂面形状与"0.3H法"接近,而下部墙体潜在的破裂面形状与朗肯主动土压力理论接近;施工期墙面最大水平变形位置在墙高的下部,竣工后墙面最大水平变形发生在墙顶处等结论。  相似文献   

8.
为研究对拉式挡土墙失稳时的力学响应规律,设计了室内模型试验,监测并分析了对拉式挡土墙在倾覆破坏和沉降破坏时墙背侧向土压力分布特征及拉筋应力的变化规律。研究结果表明,在对拉式挡土墙发生倾覆破坏时,倾覆端侧向土压力普遍增大,整体呈抛物线形式,沉降端土压力普遍减小;单拉筋条件下的沉降破坏,随着沉降量的增加,拉筋应力逐渐增大,倾覆端土压力在拉筋作用下呈现出倾覆破坏时的土压力分布,沉降端土压力整体呈先增后减的趋势且拉筋上部土压力变化幅度远大于拉筋下部;多拉筋条件下的沉降破坏,上部拉筋钢筋应力迅速减小,下部拉筋迅速增大,其墙背土压力与单拉筋条件下的墙背土压力相似,因此,在易发生不均匀沉降地段的对拉式挡土墙应加强下部拉筋及挡土墙墙身的强度。  相似文献   

9.
路堤式加筋土挡墙的试验研究   总被引:12,自引:0,他引:12  
对铁路路堤式加筋土挡墙的墙面板水平土压力、墙后土体垂直土压力及加筋材料变形进行了现场原位试验,分析了加筋土挡墙面板水平土压力沿墙高的变化及分布规律、墙后土体垂直土压力变化及加筋材料的变形随填高及时间的变化规律。路堤式加筋土挡墙的面板水平土压力沿墙高呈曲线型分布,同一水平面同一层拉筋的不同位置垂直土压力不一致,实测垂直土压力与理论垂直土压力的比值随距面板的距离增大而线性增大,并得出了路堤式加筋土挡墙的破裂面。  相似文献   

10.
在现场对由L型挡土墙与加筋土挡墙形成的多级加筋土复合式挡墙进行了原位试验。试验表明:土压力和拉筋应变随上覆填土厚度增加而增大,但增速却减小;L型挡土墙的加筋土体底部竖向土压力沿筋长方向在加筋土施工期间呈非残性分布,在其上的中且上级模块式加筋土挡墙的竖向土压力施工期呈明显的非线性分布,但最大值均靠近拉筋尾部;L型加筋土挡墙的拉筋应变非常小,且曲线只有一个峰值;模块式加筋土挡墙的加筋土体底部竖向土压力沿筋长方向起初呈线性分布且大小基本相同,但随着填土厚度的增大而呈明显的非线性分布,且出现双峰值;中、上级挡墙的墙面板基底竖向应力随填土厚度的变化形式基本一样,且随填土厚度的增大先是内侧大于外侧,而后是外侧大于内侧;模块式加筋土挡墙的墙背侧向土压力沿墙高、拉筋应变沿筋长方向均呈非线性分布,且实测值均较小。  相似文献   

11.
双面加筋路堤作为加筋土挡土墙的一种衍生结构,沿袭了加筋土挡土墙优良的抗震性能,被广泛应用于道路建设工程,然而国内外关于双面加筋路堤的抗震设计还不够完善,采用的基于极限平衡法的抗震设计仍存在诸多问题。采用基于PLAXIS软件的有限元分析方法,对双面加筋路堤进行了较为全面的动力特性分析,结果表明,地震作用下双面加筋路堤的各层筋材最大内力分布、单侧面板侧移形式及路面沉降形式同单一的加筋土挡土墙表现形式相似;通过对不同宽高比结构筋材内力的分析得出,在地震作用下,加筋区及非加筋区之间存在第二潜在破裂面发育的可能。基于单自由度强迫振动理论及数值分析结果,建立了整体最大筋材内力与地震动及结构参数的关系。  相似文献   

12.
The paper describes numerical models that were developed to simulate the performance of two instrumented mechanically stabilized earth walls constructed in Izmir, Turkey. These walls were constructed with gabion facing, hybrid reinforcement layers, and fill on a rigid foundation. The hybrid reinforcement layers comprised primary reinforcement (geogrid) and secondary reinforcement (wire mesh). The vertical spacing between the primary reinforcement changed from 1 m to 2 m in two walls while other properties were kept the same. The responses of the field walls at the end of construction were simulated and compared with the numerical results. The results calculated from the numerical models showed generally good agreement with the measured wall facing displacements, horizontal fill displacements, and tensile forces in the geogrid and in the wire mesh. The maximum calculated facing displacements for the walls with 1 m and 2 m reinforcement spacing were 30.7 and 36.4 mm, respectively. The maximum tensile forces in the geogrid layers were increased by 1.5 times in the 2 m spacing wall as compared with the 1 m spacing wall due to the increase of primary reinforcement spacing. However, the spacing change did not have an obvious effect on the increase of tensile forces in the secondary reinforcement (the wire mesh). The calculated results were also compared with theoretical results relating to the earth pressure distributions and the location of the maximum tensile strains in the primary reinforcement. The horizontal earth pressures against the wall facing were close to the active earth pressures for both walls. The maximum tensile strain line of the reinforcement was close to the Rankine's failure line.  相似文献   

13.
开展了干砂地层中基坑开挖对旁侧隧道影响及隔断墙保护作用的三维离心模型试验和数值分析,获得了隧道上浮、隧道内力、隧道周围土压力、地表沉降等变化规律以及隧道空间位置和基坑开挖深度的影响。试验结果表明,基坑回弹量与采用Boussinesq解计算的回弹量比较接近;地表沉降量与文献报道的试验结果相近,而明显小于现场实测沉降;靠近基坑一侧的隧道周围土压力有所减小,而远离基坑一侧的隧道周围土压力则有所增加。隔断墙的设置可以一定程度上减小地表沉降、隧道外土压力变化、围护墙水平位移以及隧道上浮和弯矩。数值计算结果表明,隧道上浮量和水平位移随着隧道埋深及其与围护墙距离的增大而减小,而随着基坑开挖深度的增大而增大。  相似文献   

14.
This paper presents an experimental study on reduced-scale model tests of geosynthetic reinforced soil (GRS) bridge abutments with modular block facing, full-height panel facing, and geosynthetic wrapped facing to investigate the influence of facing conditions on the load bearing behavior. The GRS abutment models were constructed using sand backfill and geogrid reinforcement. Test results indicate that footing settlements and facing displacements under the same applied vertical stress generally increase from full-height panel facing abutment, to modular block facing abutment, to geosynthetic wrapped facing abutment. Measured incremental vertical and lateral soil stresses for the two GRS abutments with flexible facing are generally similar, while the GRS abutment with rigid facing has larger stresses. For the GRS abutments with flexible facing, maximum reinforcement tensile strain in each layer typically occurs under the footing for the upper reinforcement layers and near the facing connections for the lower layers. For the full-height panel facing abutment, maximum reinforcement tensile strains generally occur near the facing connections.  相似文献   

15.
根据拟建中的长江沉管隧道竖井场址的地质情况及其设计参数,推导了大型竖井一侧进行深开挖时竖井稳定性的模型试验相似关系.通过模型试验,获得了不同基础埋深和水位变化时,竖井倾斜、位移、沉降、土压力等关系数据.分析研究了竖井的不同基础埋深对稳定性影响,试验成果解决了大型深埋竖井一侧要进行深开挖时的有关设计难题,亦可为地下深埋结构一侧大开挖时的设计和稳定性分析提供参考.  相似文献   

16.
Expansion of bridge girders in summer moves integral bridge abutments toward backfill, causing high lateral earth pressures behind the abutment. Some backfill material slumps downward and toward the abutment when the abutment moves away from the backfill due to bridge girder contraction in winter. Placement of geogrids within the backfill can increase stability of the backfill while placement of compressible inclusions (e.g., Expanded Polystyrene (EPS) foam) can reduce lateral earth pressures behind the abutment caused by bridge girder expansion. In this study, six physical model tests were conducted with 30 abutment top movement cycles due to simulated seasonal temperature changes to study the performance of integral bridge abutments with different mitigation measures. The test results showed that geogrid reinforcements caused higher maximum lateral earth pressures at the same abutment movement, but geogrids with wrap-around facing significantly reduced the backfill surface settlements. The combination of the EPS foam and geogrids could minimize lateral earth pressure increase and backfill settlement. The EPS foam reduced the abutment toe outward movement when the abutment top was pushed against the backfill; however, the mitigation effects by the EPS foam was limited due to its small thickness and relatively high elastic modulus in this study.  相似文献   

17.
 基于软弱地基刚/柔性组合墙面加筋土挡墙离心模型试验,建立原型挡墙三维精细化有限差分数值模型,探讨挡墙在上覆荷载作用下的性状及受力机制。研究结果表明,数值模型计算结果与离心模型试验结果吻合较好,显示该型挡墙具有很好的承载性能,能适应软弱地基的大变形;挡墙在上覆荷载下产生的变形增量和结构受力与填土内部潜在滑移面位置密切相关,当潜在滑移面位置超过连接件埋深范围时,连接件作用降低,使得挡墙变形和筋材拉力增量明显增大,不均匀沉降显著,而刚性墙面墙背水平土压力和连接件拉力减小;由于“张力膜效应”,下面布置有连接件的筋材较下面无连接件的筋材,其拉力要大一些;上覆荷载引起的作用在组合墙面上的水平荷载可采用朗肯主动土压力计算,设计上,宜按连接件多承担水平荷载考虑。  相似文献   

18.
In this study, the seismic behavior of a mechanically stabilized earth (MSE) wall with inclined backfill is investigated under sinusoidal acceleration excitations using a series of 1-g shaking table tests performed on the MSE model of 150 cm in height reinforced with polymeric geostrips. The effects of the stiffness of the reinforcement and slope angles of the backfill soil on the acceleration amplification factor (RMSA), the lateral displacement of the wall, the surface displacement of the backfill, the distribution of dynamic earth pressure along the height of reinforced wall and the strain distributions on the surfaces of the polymeric geostrips in three planes of the wall are investigated. The experimental results show that the dynamic earth pressure determined by traditional pseudo-static approaches leads to overestimated values. In addition, increasing the inclination angle of backfill soil results in the increase of surface settlement, lateral wall displacements, soil dynamic earth pressures, acceleration amplification factors and strains on the polymeric geostrip materials. The stiffness of the polymeric geostrip material has a negligible effect on the displacement, dynamic earth pressures and failure surface geometry.  相似文献   

19.
In this study, both two-dimensional (2D) and three-dimensional (3D) numerical analyses were carried out to evaluate the performance of geosynthetic-reinforced soil (GRS) piers. The numerical models were first calibrated and verified against test results available in the literature. A parametric study was then conducted under both 2D and 3D conditions to investigate the influences of reinforcement tensile stiffness, reinforcement vertical spacing, and a combination of reinforcement stiffness and spacing on the performance of GRS piers under vertical loading. Numerical results indicated that the effect of reinforcement spacing was more significant than that of reinforcement stiffness. The use of closely – spaced reinforcement layers resulted in higher global elastic modulus of the GRS pier, smaller lateral displacements of pier facing and volumetric change of the GRS pier, lower and more uniformly-distributed tension in the reinforcement, and larger normalized coefficients of lateral earth pressure. This study concluded that a 2D numerical model gave more conservative results than a 3D model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号