首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
 为研究抗滑桩加固上覆堆积体--下伏基岩二元结构边坡的抗震机制,开展2组1∶50比尺的离心振动台模型试验,以对比分析下伏基岩堆积体边坡在抗滑排桩加固前后的地震响应特征与抗滑桩的桩身弯矩分布规律。试验时,输入4级加速度峰值连续增大的El Centro波,监测边坡模型坡面与坡体内的加速度响应、坡顶沉降变形以及抗滑桩上静、动弯矩的分布。试验结果显示由于抗滑桩抑制了上覆堆积体的下滑,坡顶的加速度峰值(PGA)放大系数、加速度反应谱以及竖向沉降变形均有不同程度的降低。抗滑桩一方面加固了上覆堆积滑体另一方面在坡体内产生了地震波的反射叠加效应,使得边坡水平响应加速度放大系数出现了桩前增大桩后减小的现象。下伏基岩堆积体边坡坡顶沉降与Arias烈度在抗滑排桩加固前后均具有良好的正相关线性关系。地震荷载作用过程中抗滑桩动力响应弯矩变化幅值明显大于地震作用后的静弯矩增量,且静弯矩与动弯矩变化幅值的分布均在基岩面附近达到峰值,易在基岩面附近造成抗滑桩的破坏,类似工况下抗滑桩的抗震配筋设计应充分考虑这一特点。  相似文献   

2.
 堆积体边坡在我国西南地区广泛分布,为深入研究其地震响应规律,设计完成了1∶50比尺的概化边坡离心振动台模型试验,分析4级不同强度地震连续作用下,风干堆积体边坡的加速度响应、边坡变形及其失稳模式。试验结果表明,堆积体边坡水平向PGA放大系数表现出了典型的高程放大效应与趋表放大效应。沿堆积体边坡高程方向,输入地震波频谱特性发生了明显改变,各测点加速度傅里叶谱的卓越频率随PGA增大而降低。考虑竖直向加速度放大效应的影响后,发现合放大系数与水平向夹角随高程有减小的趋势,反映了坡面处发生的波场分裂与波型转换现象。随地震波幅值的增大,水平向与竖直向PGA放大系数均先减小后增大。试验过程中观察发现在地震波加速度峰值达到0.216 g时堆积体边坡开始失稳,坡顶沉降明显,失稳模式以浅层崩滑为主。  相似文献   

3.
 设计制作了两个含泥化夹层的顺层岩质边坡模型,并完成了大型振动台试验。试验结果表明:随着输入地震波时间轴压缩倍数增大,地震波卓越频率增加,边坡坡面水平方向加速度放大效应增强,同时,随着边坡相对高度的增加,压缩比对水平方向加速度放大效应的影响程度增大;当输入地震动幅值小于0.3 g时,坡面加速度放大系数随输入地震动幅值增加而增大,反之,放大系数减小;在水平方向,泥化夹层饱水后坡脚部位加速度放大系数小于饱水前,而坡面中上部加速度放大系数大于饱水前;在垂直方向,泥化夹层饱水后坡面加速度放大系数小于饱水前;泥化夹层饱水前,坡面加速度放大系数大于坡体内部,泥化夹层饱水后,下部坡体内部加速度放大系数大于坡面,中上部坡体内部加速度放大系数小于坡面。分析边坡破坏过程可以发现含泥化夹层顺层岩质边坡的破坏模式为拉裂–滑移–崩落式。  相似文献   

4.
以甘肃天水地区典型黄土–泥岩滑坡为原型,采用顺层倾角80°的断裂带黄土–泥岩边坡概念模型,通过输入峰值加速度逐级增大的地震波,设计并开展比例尺为1∶20的振动台模型试验,结合数值模拟,揭示陡倾顺层断裂带黄土–泥岩边坡地震动力响应规律以及失稳模式。研究结果表明:加速度动力响应在坡面处具有趋表效应,在断裂带处放大效应明显大于两侧地层;峰值加速度a=0.3 g是边坡地震响应的临界点,断裂带上盘放大效应、竖向与水平向动土压力响应在此临界点上下的响应性状与特征不同,当a≤0.3 g时边坡断裂带上盘放大效应不明显,竖向动土压力响应与上覆地层厚度呈正相关,水平向动土压力响应在坡肩处最强烈,在断裂带处呈整体降低趋势,而当a0.3 g时边坡断裂带上盘放大效应显著,竖向动土压力受断裂带和上覆地层厚度共同控制,且坡脚处的地震响应强烈;地震作用下陡倾断裂带黄土–泥岩边坡失稳模式为震裂滑移式破坏,其中上盘震裂裂隙分布区范围是下盘的1.5倍,这是陡倾断裂带边坡具有一定的断裂带上盘放大效应的又一佐证。  相似文献   

5.
层状岩体斜坡强震动力响应的振动台试验   总被引:5,自引:2,他引:3  
 通过大型振动台试验,研究反倾和顺层两类结构岩体边坡在强震条件下的地震动力响应。结果表明:强震条件下,斜坡对水平地震动力的响应要远超过垂直地震动力,前者所导致的加速度响应峰值(PGA)放大系数是后者的2~3倍。在水平地震动力作用下,斜坡的地震动响应具有显著的高程效应和结构效应。对于硬岩顺层斜坡在1/2倍坡高以上坡面和坡内均出现显著的PGA放大效应;而硬岩反倾斜坡的放大效应则主要表现在坡体内部1/2倍坡高以上和坡体表部2/3倍坡高以上,且放大幅度要高于顺层斜坡。软岩斜坡在水平地震力作用下的动力响应总体上较硬岩斜坡弱,顺层斜坡表现为1/2倍坡高后,PGA放大系数的持续增大,而反倾斜坡主要表现为坡表中下部(1/4倍坡高处)和3/4倍坡高以上PGA的突然增大。模型在强震条件下的破裂观测结果表明:硬岩顺层斜坡(HD)在变形破坏通常表现为顺层滑移–下部隆起溃屈型失稳;硬岩反倾斜坡(HAD)为后缘垂直拉裂–中下部平缓剪出型失稳(L型滑面);软岩顺层斜坡(SD)为顺层滑移–底部挤出–分层滑移型失稳;软岩反倾斜坡(SAD)为斜坡顶部拉裂–下部剪出型失稳。试验结果与现场观察现象能较好吻合,从而深入揭示强震条件下层状结构斜坡的地震动力响应和失稳破坏机制。  相似文献   

6.
根据工程地质勘探和室内外试验建立上海软土场地计算模型,采用Biot动力固结理论,结合弹塑性边界面模型,研究三向地震作用下地下水位上升对场地土层地震反应的影响。利用具有水平和垂直三向完整加速度记录的Taft波构造基岩输入地震动时程曲线,分析三向地震作用下地下水位上升对土层竖向和水平加速度放大效应、竖向与水平加速度峰值比、地表加速度和反应谱特征以及沿土层深度最大孔隙水压力和孔压比的影响。计算分析表明:地下水位上升对水平向和竖向峰值加速度的放大效应影响差异显著,同时对地表加速度及其反应谱特征具有重要影响。地下水位的上升,地表水平峰值加速度放大效应增大,竖向峰值加速度放大效应减小;竖向与水平向加速度峰值比减小;土层高频滤波作用增强,长周期成分放大效应增大;近地表液化土层范围增大,加剧砂土液化危害性。  相似文献   

7.
唐家山滑坡变形运动机制的离散元模拟   总被引:3,自引:2,他引:1  
 地震是滑坡灾害的一个重要触发因素,而这类形式的滑坡通常危害较大。以汶川地震触发的唐家山滑坡为例,在野外现场调查基础上,采用离散元数值模拟技术,对滑坡由变形累积到破坏滑动的全过程进行模拟,以研究地震作用下顺层岩质滑坡的变形破坏过程。结果表明:在地震力及滑体重力作用下,坡顶首先形成应力集中,滑体沿中后部的软弱面产生蠕变变形,随着持续的地震动力输入,应力不断向中前部的锁固段集中,使得变形沿接触面不断向坡脚方向扩展,最终从坡脚剪出,破裂面贯通形成滑带;通过滑动过程模拟表明,唐家山滑坡运动模式为:启动→高速滑动→碰撞停积→自稳过程,滑坡滑动过程中,斜坡表层部分块体在地震水平力作用下发生临空抛射现象,表层岩体在滑动过程中,受地震竖向作用力而发生垂直抛落现象;地震力作用下坡体中质点加速度、速度具有高程放大效应,表现为水平加速度放大系数大于竖向加速度放大系数、水平速度放大系数大于竖向速度放大系数,对比结构面监测点和基岩监测点加速度、速度放大系数,表明滑坡启动时具有较大的加速度,也说明不连续结构面对岩质边坡的动力反应起着控制性作用。  相似文献   

8.
 采用物理模型试验,研究强震作用下反倾层状结构岩质边坡动力响应特征及破坏过程。试验结果表明:(1)加速度放大系数具有随坡高而增大,且越接近坡顶放大越明显的非线性高程效应及越接近坡表放大越强烈的非线性趋表效应。(2) 基本以3/4坡高为界,此高度以上,边坡水平加速度放大效应明显高于垂直加速度,而此高度以下,垂直加速度放大效应较明显。(3) 地震波频率对加速度放大系数影响最大,当地震波频率越接近坡体自振频率时,加速度放大越明显,且边坡出现波动特性的坡高越低。(4) 加速度峰值不改变动力加速度放大系数在坡体内的分布,但加速度峰值越高,边坡动力加速度放大系数越大。(5) 反倾层状结构边坡在地震力作用下的破坏过程主要为:地震诱发→坡顶结构面张开→坡体浅表层结构面张开→浅表层结构面张开数量增加、张开范围向深处发展,且坡体中出现块体剪断现象→边坡中、上部及表层岩体结构松动,坡体内出现顺坡向弧形贯通裂缝。试验中出现的变形分带现象进一步证明了动力加速度放大系数在坡体内分布的非线性。  相似文献   

9.
汶川地震触发窝前滑坡特征及失稳机制探讨   总被引:1,自引:0,他引:1  
 为弄清汶川地震触发窝前滑坡特征,探讨该滑坡的失稳机制,笔者先后多次赴滑坡区开展调研。调研结果表明:(1) 窝前滑坡为上陡下缓、上硬下软型地形地质结构,属于拉裂–走向滑移型的斜坡失稳破坏模式;(2) 由于石坎断层活动,在近断层上盘效应、强地震动集中性、地震波长持时累积效应、地形放大效应和地震动水平加速度效应作用下,直接触发的一起剧动式高速远程滑坡;(3) 表现出一系列与一般重力环境下滑坡迥异的运动和堆积特征,如高陡粗糙的滑坡壁、弯道超高和侧向抛撒、颗粒分异堆积等特征,运动中形成滑源区、陡坡加速区、碎屑流通区(流槽区和爬高区)、堆积区和抛撒区;(4) 主要经历山体震动拉裂、高速溃滑、碎屑流和堆积4个阶段。滑坡运动至800 m左右时,峰值速度达56.1 m/s,全程运动时间约57.1 s,平均速度35.6 m/s;高位势能和滑体碎屑化是窝前滑坡产生高速远程运动的主要原因。  相似文献   

10.
为研究西北地区特殊的黄土–泥岩二元结构边坡地震动响应机制,以天水地区典型边坡和滑坡为原型,采用黄土–泥岩组合的概念模型,设计并完成比例1∶40的离心机振动台试验。在满足相似律的条件下,通过输入不同振幅的水平向和垂向地震波,系统地研究模型边坡的地震动力响应特性。以输入加速度峰值0.1 g为例,对这2种边坡模型的动力响应及破坏特征差异进行分析,结果表明:2种边坡关键点位的动力响应水平向大于垂向,呈非线性,并表现为趋表效应、高程效应和岩性效应;一般黄土边坡的破坏形式表现为:坡肩形成拉张裂隙,逐渐扩张,坡肩产生向临空面方向的位移,坡体中上部的黄土覆盖层隆起,部分土体振松滑落堆积在坡脚;黄土滑坡的破坏形式表现为:滑坡后壁形成拉张裂隙,逐渐扩张,滑坡后壁发生崩落,滑坡顶部堆积体略有下挫,形成凹槽,坡脚发生轻微鼓胀。  相似文献   

11.
基于相似比理论,设计并完成了典型黄土滑坡物理模型试验,采用先进的离心机振动台技术,实现水平+垂直振动,研究黄土滑坡的地震动放大效应及变形模式,并配合有限差分数值模拟方法相互验证。结果表明:沿滑坡体浅表层加速度放大作用具有明显的趋表效应,水平向和垂向加速度放大效应呈非线性增加,且水平向大于垂向;在滑坡体的滑动面附近加速度放大作用呈现出岩性结构效应;随高程增加加速度响应逐渐增大,表现出高程效应,滑坡后壁放大作用明显。随入射地震波强度的增加,滑坡体内部关键部位加速度放大作用基本是先增大后减小的趋势。强震作用下黄土滑坡的破坏形式为:滑坡后壁形成拉裂隙并逐渐扩展,滑坡后壁发生崩塌,滑体略有下挫,形成拉槽,坡体中部鼓胀,坡脚有大量崩积物。研究结果为探讨地震作用下黄土滑坡的加速度放大效应和变形破坏情况,以期为天水地区黄土滑坡的地震稳定性评价和抗震设计提供参考。  相似文献   

12.
 加速度响应规律是解释滑坡震害、合理确定地震影响系数的基础。为此,设计完成了50倍重力加速度条件下的堆积型滑坡离心振动台模型试验,用来研究堆积型滑坡的加速度响应特征及规律。模型滑坡放置于600 mm×400 mm×500 mm(L×W×H)的刚性模型箱内,采用汶川地震清溪台站反演的基岩波作为基底输入,调整其幅值,研究不同强度地震动作用下堆积型滑坡的加速度响应特征及规律。试验结果表明:坡面水平向和竖直向峰值加速度(PGA)放大系数随滑坡的高程增加而增大,趋于坡顶时,增速明显变大,具有明显的高程放大效应;地震动作用下坡面与坡体内部的加速度响应特征明显不同,具有坡面浅表放大效应;滑床岩体自下向上水平向加速度有放大趋势,但与滑坡浅表土体相比,放大倍数则明显减弱;坡顶附近存在显著的波型转换现象;随着输入地震波强度的增大,PGA放大系数总体上表现为递减趋势。所得到的成果初步揭示了堆积型滑坡的加速度响应特征,为解释滑坡震害、确定地震影响系数等提供较可靠的依据。  相似文献   

13.
地震作用下含倾斜软弱夹层斜坡场地的动力响应特性研究   总被引:1,自引:0,他引:1  
以四川北部龙门山断裂带附近山区内某核废料处置场为参考原型,概化出含软弱夹层的斜坡场地模型,设计完成该特殊场地在50倍重力加速度条件下的离心振动台模型试验,监测场地在不同输入地震工况下的加速度响应,重点通过加速度放大效应和地震波波动机制探讨软弱夹层和斜坡效应对斜坡场地动力响应的影响,此外,结合传统傅里叶谱和Hilbert边际谱方法,从频域角度展示场地的频谱变化特性。试验结果表明:软弱夹层的加速度放大效应与输入地震动峰值有关,当输入地震动峰值较小时,夹层内响应加速度峰值被削弱,当输入峰值较大时,则被增强;斜坡效应对该场地中软弱夹层内的动力响应存在影响,导致斜坡下的软弱夹层内加速度放大效应增强;随着输入地震动峰值增大,软弱夹层中响应加速度的频率成分发生了变化,高频成分减少而低频成分增加。  相似文献   

14.
“坡”、“场”因素对大型滑坡运动特征的影响   总被引:5,自引:1,他引:4  
以滑坡的最大水平距离(Lmax)和视摩擦因数(Hmax/Lmax)为评价指标,探讨"坡"(滑坡体积(V)、滑坡高度(H)、滑坡坡度(α))和"场"(坡脚约束角(θ)、场地条件(X))因素对大型地震滑坡和降雨滑坡运动的影响特征。研究结果表明:在滑坡最大水平距离(Lmax)的影响上,滑坡高度(H)是降雨滑坡的主要因素,影响因素大小的顺序为H,α,θ和X。而对于体积为106~107 m3的地震滑坡,场地条件的影响比降雨滑坡大,其影响因素从大到小的顺序依次为H,X,α和θ。当地震滑坡体积大于107 m3时,滑坡坡度(α)则是Lmax的主要因素,影响因素从大到小的顺序依次为α,H,θ和X。显著性分析结果表明,滑坡高度(H)是大型降雨滑坡和体积为106~107 m3的地震滑坡的最大水平距离Lmax的显著性影响因素。在滑坡的视摩擦因数(Hmax/Lmax)的影响上,滑坡坡度(α)是地震滑坡的主要因素,影响因素从大到小的顺序依次为α,H,X和θ。而对于降雨滑坡,体积为106~107 m3时影响因素从大到小的顺序依次为α,H,θ和X;体积大于107 m3时,则影响因素从大到小的顺序依次为H,α,X和θ。显著性分析结果表明,H,α,X是体积大于107 m3的地震滑坡Hmax/Lmax的显著性影响因素。  相似文献   

15.
 2008年汶川八级地震形成了至少257个堰塞坝,主震后发生的大量余震可能会影响堰塞坝的动力安全状态。堰塞坝体的动力特性参数(包括自振频率和阻尼比等)和加速度分布规律是堰塞坝地震安全研究的基础内容。通过大型振动台模型试验,研究在余震作用下模型堰塞坝体的动力特性参数、加速度分布规律及二者的影响因素,并根据动力相似律,计算原型坝体的动力特性参数。共进行2组不同材料的振动台模型试验,分别模拟含黏粒较多且颗粒较小(坝体I)和基本不含黏粒且颗粒较大(坝体II)的2种坝体。在不同地震波形输入、不同加速度峰值和不同水位条件下进行振动台试验。研究成果表明:(1) 模型坝体具有较稳定的X向和Z向自振频率和阻尼比。(2) 先期振动使坝体自振频率降低,阻尼比有增大趋势;坝体I的自振频率小于坝体II。水位变化对2种坝体自振频率的影响规律不一致。(3) 加速度放大倍数随高程增大而增大,最大加速度发生在坝顶处;相同高程测点加速度放大倍数最大值出现在上游或下游靠近坝坡表面处,即“表面放大”效应明显,说明坝坡表面容易受地震作用破坏。(4) 所含频谱成分与坝体自振频率接近的地震波会引起最大的加速度反应。Z向振动使坝体测点X向加速度放大倍数增大。加速度放大倍数一般随输入加速度峰值的增大而减小。  相似文献   

16.
地震作用下岩质边坡动力响应特性及变形破坏机制研究   总被引:9,自引:2,他引:7  
 以汶川地震诱发大型岩质边坡为研究对象,基于相似理论,采用室内大型振动台模型试验,通过输入不同频率、不同持时以及不同幅值的正弦波,研究顺层及均质结构岩质边坡的动力加速度响应特征及动力输入参数对边坡动力特性的影响。试验结果表明,模型边坡动力加速度分布存在明显的而非线性高程放大特性及非线性趋表特性;且边坡对加速度的放大存在高度效应,即边坡中上部大约3/4坡高以上对水平加速度放大明显,而中下部对竖直加速度放大明显;受地形作用影响,边坡坡脚对加速度具有明显的抑制作用;地震波输入的动力参数对加速度动力特性有影响,地震波频率对加速度影响最为明显,边坡动力加速度随频率的增加而呈非线性增大的趋势,当地震波频率接近边坡模型自振频率时影响最大,且频率的增加改变坡体内加速度的分布特征;动力加速度随边坡输入加速度峰值的增加而增加,但幅值的变化并不改变加速度在坡体内的分布;地震波持时对动力加速度影响轻微。边坡坡体结构是影响其动力特性的重要因素,顺层结构边坡由于存在大量的结构面其动力加速度放大系数要高于均质结构边坡15%左右。  相似文献   

17.
利用大型振动台试验研究双排抗滑桩支护在地震荷载作用下的抗震性能。通过对比上部锚杆+下部双排桩共同支护与单一桩支护的破坏过程,分析两种情况下坡体的动力响应与破坏机制。试验表明在桩+锚杆共同支护下,桩后边坡坡脚首先发生剪切破坏,当地震动作用增大到一定范围,坡顶出现张拉裂缝,两者贯通时边坡发生越顶破坏;单一桩支护条件下,首先在坡顶出现张拉裂缝,裂缝随着地震动作用增大向下扩展,当同下部剪切滑移带贯通时,边坡失稳破坏。通过坡体裂缝发展过程、位移及加速度监测数据表明,前者的抗震性能显著优于后者;在地震动作用下,边坡破坏是张拉–剪切复合作用的结果。试验研究为双排抗滑桩抗震设计奠定了坚实的基础。  相似文献   

18.
地震和地裂缝耦合作用严重威胁着地铁工程的安全。通过开展地裂缝场地(穿越地裂缝)地铁车站结构模型的振动台试验,分析了地震作用下地裂缝场地土的加速度反应、裂缝发展和车站的加速度、应变等动力反应规律。试验结果表明:模型土在临近地裂缝的一定范围内地震响应较大,且距地裂缝相同距离处,上盘的加速度响应整体上大于下盘;地裂缝场地地铁车站峰值加速度沿结构高度的分布规律与地震强度有关,即小震作用下结构峰值加速度呈现随结构高度增大而增大的倒三角分布,强震作用下则呈现顶部和底部较大、中部相对较小的"K"型分布;地裂缝场地地铁车站地震破坏模式是地裂缝场地水平剪切变形和竖向上、下盘的错动作用使结构产生明显变形,中柱发生严重的剪压破坏,侧墙与楼板连接处出现一定的受拉损伤,从而导致结构失效;考虑竖向地震作用后,地裂缝场地地铁车站破坏更为严重,这是由于竖向地震增大了地裂缝场地动力放大效应和上、下盘错动作用。  相似文献   

19.
准确理解地震作用下堆积体边坡的动力响应及失稳特征,可以为边坡抗震设计及稳定性分析方法提供依据。为了探讨不同类型地震荷载作用下堆积体边坡的失稳特征及动力响应,该文开展室内振动台模型试验。分析不同加载波形条件下边坡失稳特征以及加速度放大系数随相对高程、无量纲加速度幅值和频率参数的变化规律。探讨堆积体边坡的典型失稳特征和相关的物理机制。结果表明,正弦波作用下堆积体边坡加速度放大系数沿相对高程增长而变化较小;汶川清平波和El-Centro波作用下边坡加速度放大系数沿边坡相对高程呈较明显增大趋势。无量纲参数对放大系数影响较弱。当振动荷载达到边坡破坏的临界荷载时,边坡在短时间内即出现失稳破坏,破坏具有突发性,失稳模式具有典型的震裂-溃散型滑坡模式。在地震动力荷载作用下边坡位移变形可分为两个典型阶段:微变形阶段和急速上升大变形阶段。就该文3种波而言,在相同波峰幅值条件下,相同持续时间内正弦波所携带的总能量最大,最易使边坡失稳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号