首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
PM2.5 exposure is associated with significant health risk. Exposures in homes derive from both outdoor and indoor sources, with emissions occurring primarily in discrete events. Data on emission event magnitudes and schedules are needed to support simulation‐based studies of exposures and mitigations. This study applied an identification and characterization algorithm to quantify time‐resolved PM2.5 emission events from data collected during 224 days of monitoring in 18 California apartments with low‐income residents. We identified and characterized 836 distinct events with median and mean values of 12 and 30 mg emitted mass, 16 and 23 minutes emission duration, 37 and 103 mg/h emission rates, and pseudo‐first–order decay rates of 1.3 and 2.0/h. Mean event‐averaged concentrations calculated using the determined event characteristics agreed to within 6% of measured values for 14 of the apartments. There were variations in event schedules and emitted mass across homes, with few events overnight and most emissions occurring during late afternoons and evenings. Event characteristics were similar during weekdays and weekends. Emitted mass was positively correlated with number of residents (Spearman coefficient, ρ=.10), bedrooms (ρ=.08), house volume (ρ=.29), and indoor‐outdoor CO2 difference (ρ=.27). The event schedules can be used in probabilistic modeling of PM2.5 in low‐income apartments.  相似文献   

2.
Particulate matter is linked to adverse health effects, however, little is known about health effects of particles emitted from typical indoor sources. We examined acute health effects of short-term exposure to emissions from cooking and candles among asthmatics. In a randomized controlled double-blinded crossover study, 36 young non-smoking asthmatics attended three exposure sessions lasting 5 h: (a) air mixed with emissions from cooking (fine particle mass concentration): (PM2.5: 96.1 μg/m3), (b) air mixed with emissions from candles (PM2.5: 89.8 μg/m3), and c) clean filtered air (PM2.5: 5.8 μg/m3). Health effects (spirometry, fractional exhaled Nitric Oxide [FeNO], nasal volume and self-reported symptoms) were evaluated before exposure start, then 5 and 24 h after. During exposures volatile organic compounds (VOCs), particle size distributions, number concentrations and optical properties were measured. Generally, no statistically significant changes were observed in spirometry, FeNO, or nasal volume comparing cooking and candle exposures to clean air. In males, nasal volume and FeNO decreased after exposure to cooking and candles, respectively. Participants reported additional and more pronounced symptoms during exposure to cooking and candles compared to clean air. The results indicate that emissions from cooking and candles exert mild inflammation in asthmatic males and decrease comfort among asthmatic males and females.  相似文献   

3.
M. Zaatari  J. Siegel 《Indoor air》2014,24(4):350-361
Particles in retail environments can have consequences for the occupational exposures of retail workers and customers, as well as the energy costs associated with ventilation and filtration. Little is known about particle characteristics in retail environments. We measured indoor and outdoor mass concentrations of PM10 and PM2.5, number concentrations of submicron particles (0.02–1 μm), size‐resolved 0.3–10 μm particles, as well as ventilation rates in 14 retail stores during 24 site visits in Pennsylvania and Texas. Overall, the results were generally suggestive of relatively clean environments when compared to investigations of other building types and ambient/occupational regulatory limits. PM10 and PM2.5 concentrations (mean ± s.d.) were 20 ± 14 and 11 ± 10 μg/m3, respectively, with indoor‐to‐outdoor ratios of 1.0 ± 0.7 and 0.88 ± 1.0. Mean submicron particle concentrations were 7220 ± 7500 particles/cm3 with an indoor‐to‐outdoor ratio of 1.18 ± 1.30. The median contribution to PM10 and PM2.5 concentrations from indoor sources (vs. outdoors) was 83% and 53%, respectively. There were no significant correlations between measured ventilation rates and particle concentrations of any size. When examining options to lower PM2.5 concentrations below regulatory limits, the required changes to ventilation and filtration efficiency were site specific and depended on the indoor and outdoor concentration, emission rate, and infiltration level.  相似文献   

4.
Incense burning is an important indoor source of airborne particles. In this study, the emission factors of PM2.5 and its chemical constituents emitted from six different brands of incense sticks were determined. Controlled experiments were conducted to measure the mass concentration of PM2.5 and to determine its chemical composition (elemental carbon (EC), organic carbon (OC), metals, and ions). Measurements showed that the emissions vary for different brands of incense sticks, with smokeless incense sticks emitting the least amount. PM2.5 emission factors range from 0.4 (smokeless incense stick) to 44.5 mg/g. Results also show that the amount of metals emitted is highly dependent on the quantity of metals present in the incense sticks. In addition, the information obtained from the controlled experiments is used to predict the concentration of PM2.5 at incense smoke-influenced microenvironments, such as temples and homes, in order to assess the potential indoor exposure during the course of incense burning. Comparison with indoor air quality guidelines suggests that inhalation of incense smoke can pose adverse health impacts.  相似文献   

5.
Q. Zhang  J. Avalos  Y. Zhu 《Indoor air》2014,24(2):190-198
This study characterized fine (PM2.5) and ultrafine particle (UFP, diameter < 100 nm) emissions from microwave popcorn and analyzed influential factors. Each pre‐packed popcorn bag was cooked in a microwave oven enclosed in a stainless steel chamber for 3 min. The number concentration and size distribution of UFPs and PM2.5 mass concentration were measured inside the chamber repeatedly for five different flavors under four increasing power settings using either the foil‐lined original package or a brown paper bag. UFPs and PM2.5 generated by microwaving popcorn were 150–560 and 350–800 times higher than the emissions from microwaving water, respectively. About 90% of the total particles emitted were in the ultrafine size range. The emitted PM concentrations varied significantly with flavor. Replacing the foil‐lined original package with a brown paper bag significantly reduced the peak concentration by 24–87% for total particle number and 36–70% for PM2.5. A positive relationship was observed between both UFP number and PM2.5 mass and power setting. The emission rates of microwave popcorn ranged from 1.9 × 1010 to 8.0 × 1010 No./min for total particle number and from 134 to 249 μg/min for PM2.5.  相似文献   

6.
Although many studies have reported the health effects of biomass fuels in developing countries, relatively few have quantitatively characterized emissions from biomass stoves during cooking and heating. The aim of this pilot study was to characterize the emission characteristics of different biomass stoves in four rural houses in Bhutan during heating (metal chimney stove), rice cooking (traditional mud stove), fodder preparation (stone tripod stove), and liquor distillation (traditional mud stove). Three stage measurements (before, during, and after the activity had ceased) were conducted for PM2.5, particle number (PN), CO, and CO2. When stoves were operated, the pollutant concentrations were significantly elevated above background levels, by an average of 40 and 18 times for PM2.5 and CO, respectively. Emission rates (mg/min) ranged from 1.07 × 102 (PM2.5) and 3.50 × 102 (CO) for the stone tripod stove during fodder preparation to 6.20 × 102 (PM2.5) and 2.22 × 103 (CO) for the traditional mud stove during liquor distillation. Usable PN data were only available for one house, during heating using a metal chimney stove, which presented an emission rate of 3.24 × 1013 particles/min. Interventions to control household air pollution in Bhutan, in order to reduce the health risks associated with cooking and heating, are recommended.  相似文献   

7.
In low‐resource settings, there is a need to develop models that can address contributions of household and outdoor sources to population exposures. The aim of the study was to model indoor PM2.5 using household characteristics, activities, and outdoor sources. Households belonging to participants in the Mother and Child in the Environment (MACE) birth cohort, in Durban, South Africa, were randomly selected. A structured walk‐through identified variables likely to generate PM2.5. MiniVol samplers were used to monitor PM2.5 for a period of 24 hours, followed by a post‐activity questionnaire. Factor analysis was used as a variable reduction tool. Levels of PM2.5 in the south were higher than in the north of the city (< .05); crowding and dwelling type, household emissions (incense, candles, cooking), and household smoking practices were factors associated with an increase in PM2.5 levels (P < .05), while room magnitude and natural ventilation factors were associated with a decrease in the PM2.5 levels (P < .05). A reasonably robust PM2.5 predictive model was obtained with model R2 of 50%. Recognizing the challenges in characterizing exposure in environmental epidemiological studies, particularly in resource‐constrained settings, modeling provides an opportunity to reasonably estimate indoor pollutant levels in unmeasured homes.  相似文献   

8.
We measured particulate matter (PM), acrolein, and other indoor air contaminants in eight visits to grocery stores in California. Retail stores of other types (hardware, furniture, and apparel) were also sampled on additional visits. Based on tracer gas decay data, most stores had adequate ventilation according to minimum ventilation rate standards. Grocery stores had significantly higher concentrations of acrolein, fine and ultrafine PM, compared to other retail stores, likely attributable to cooking. Indoor concentrations of PM2.5 and acrolein exceeded health guidelines in all tested grocery stores. Acrolein emission rates to indoors in grocery stores had a mean estimate about 30 times higher than in other retail store types. About 80% of the indoor PM2.5 measured in grocery stores was emitted indoors, compared to only 20% for the other retail store types. Calculations suggest a substantial increase in outdoor air ventilation rate by a factor of three from current level is needed to reduce indoor acrolein concentrations. Alternatively, acrolein emission to indoors needs to be reduced 70% by better capturing of cooking exhaust. To maintain indoor PM2.5 below the California annual ambient standard of 12 μg/m3, grocery stores need to use air filters with an efficiency rating higher than the MERV 8 air filters commonly used today.  相似文献   

9.
This work aims to characterize levels and phase distribution of polycyclic aromatic hydrocarbons (PAHs) in indoor air of preschool environment and to assess the impact of outdoor PAH emissions to indoor environment. Gaseous and particulate (PM1 and PM2.5) PAHs (16 USEPA priority pollutants, plus dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were concurrently sampled indoors and outdoors in one urban preschool located in north of Portugal for 35 days. The total concentration of 18 PAHs (ΣPAHs) in indoor air ranged from 19.5 to 82.0 ng/m3; gaseous compounds (range of 14.1–66.1 ng/m3) accounted for 85% ΣPAHs. Particulate PAHs (range 0.7–15.9 ng/m3) were predominantly associated with PM1 (76% particulate ΣPAHs) with 5‐ring PAHs being the most abundant. Mean indoor/outdoor ratios (I/O) of individual PAHs indicated that outdoor emissions significantly contributed to PAH indoors; emissions from motor vehicles and fuel burning were the major sources.  相似文献   

10.
Singapore is a tropical country with a high density of day-care facilities whose indoor environments may be adversely affected by outdoor fine particle (PM2.5) air pollution. To reduce this problem requires effective, evidence-based exposure-reduction strategies. Little information is available on the penetration of outdoor PM2.5 into day-care environments. Our study attempted to address the following objectives: to measure indoor infiltration factor (Finf) of PM2.5 from outdoor PM2.5 and to determine the building parameters that modify the indoor PM2.5. We collected indoor/outdoor 1-min PM2.5 from 50 day-care classrooms. We noted mean Finf ± SD of 0.65 ± 0.22 in day-care rooms which are naturally ventilated and lower Finf ± SD values of 0.47 ± 0.18 for those that are air-conditioned: values which are lower than those reported in Singapore residences. The air exchange rates were higher in naturally ventilated rooms (1.47 vs 0.86 h−1). However, fine particle deposition rates were lower for naturally ventilated rooms (0.67 ± 0.43 h−1) compared with air-conditioned ones (1.03 ± 0.55 h−1) presumably due to composite rates linked to the filters within the split unit air-conditioners, higher recirculation rates, and interior surfaces in the latter. Our findings indicate that children remaining indoor in daycares where air-conditioning is used can reduce their PM2.5 exposures during outdoor pollution episodes.  相似文献   

11.
Cooking is recognized as an important source of particulate pollution in indoor and outdoor environments. We conducted more than 100 individual experiments to characterize the particulate and non‐methane organic gas emissions from various cooking processes, their reaction rates, and their secondary organic aerosol yields. We used this emission data to develop a box model, for simulating the cooking emission concentrations in a typical European home and the indoor gas‐phase reactions leading to secondary organic aerosol production. Our results suggest that about half of the indoor primary organic aerosol emission rates can be explained by cooking. Emission rates of larger and unsaturated aldehydes likely are dominated by cooking while the emission rates of terpenes are negligible. We found that cooking dominates the particulate and gas‐phase air pollution in non‐smoking European households exceeding 1000 μg m?3. While frying processes are the main driver of aldehyde emissions, terpenes are mostly emitted due to the use of condiments. The secondary aerosol production is negligible with around 2 μg m?3. Our results further show that ambient cooking organic aerosol concentrations can only be explained by super‐polluters like restaurants. The model offers a comprehensive framework for identifying the main parameters controlling indoor gas‐ and particle‐phase concentrations.  相似文献   

12.
In Paraguay, 49% of the population depends on biomass (wood and charcoal) for cooking. Residential biomass burning is a major source of fine particulate matter (PM2.5) and carbon monoxide (CO) in and around the household environment. In July 2016, cross‐sectional household air pollution sampling was conducted in 80 households in rural Paraguay. Time‐integrated samples (24 hours) of PM2.5 and continuous CO concentrations were measured in kitchens that used wood, charcoal, liquefied petroleum gas (LPG), or electricity to cook. Qualitative and quantitative household‐level variables were captured using questionnaires. The average PM2.5 concentration (μg/m3) was higher in kitchens that burned wood (741.7 ± 546.4) and charcoal (107.0 ± 68.6) than in kitchens where LPG (52.3 ± 18.9) or electricity (52.0 ± 14.8) was used. Likewise, the average CO concentration (ppm) was higher in kitchens that used wood (19.4 ± 12.6) and charcoal (7.6 ± 6.5) than in those that used LPG (0.5 ± 0.6) or electricity (0.4 ± 0.6). Multivariable linear regression was conducted to generate predictive models for indoor PM2.5 and CO concentrations (predicted R2 = 0.837 and 0.822, respectively). This study provides baseline indoor air quality data for Paraguay and presents a multivariate statistical approach that could be used in future research and intervention programs.  相似文献   

13.
The intensity, frequency, duration, and contribution of distinct PM2.5 sources in Asian households have seldom been assessed; these are evaluated in this work with concurrent personal, indoor, and outdoor PM2.5 and PM1 monitoring using novel low-cost sensing (LCS) devices, AS-LUNG. GRIMM-comparable observations were acquired by the corrected AS-LUNG readings, with R2 up to 0.998. Twenty-six non-smoking healthy adults were recruited in Taiwan in 2018 for 7-day personal, home indoor, and home outdoor PM monitoring. The results showed 5-min PM2.5 and PM1 exposures of 11.2 ± 10.9 and 10.5 ± 9.8 µg/m3, respectively. Cooking occurred most frequently; cooking with and without solid fuel contributed to high PM2.5 increments of 76.5 and 183.8 µg/m3 (1 min), respectively. Incense burning had the highest mean PM2.5 indoor/outdoor (1.44 ± 1.44) ratios at home and on average the highest 5-min PM2.5 increments (15.0 µg/m3) to indoor levels, among all single sources. Certain events accounted for 14.0%-39.6% of subjects’ daily exposures. With the high resolution of AS-LUNG data and detailed time-activity diaries, the impacts of sources and ventilations were assessed in detail.  相似文献   

14.
Emissions from indoor biomass burning are a major public health concern in developing areas of the world. Less is known about indoor air quality, particularly airborne endotoxin, in homes burning biomass fuel in residential wood stoves in higher income countries. A filter‐based sampler was used to evaluate wintertime indoor coarse particulate matter (PM10‐2.5) and airborne endotoxin (EU/m3, EU/mg) concentrations in 50 homes using wood stoves as their primary source of heat in western Montana. We investigated number of residents, number of pets, dampness (humidity), and frequency of wood stove usage as potential predictors of indoor airborne endotoxin concentrations. Two 48‐h sampling events per home revealed a mean winter PM10‐2.5 concentration (± s.d.) of 12.9 (± 8.6) μg/m3, while PM2.5 concentrations averaged 32.3 (± 32.6) μg/m3. Endotoxin concentrations measured from PM10‐2.5 filter samples were 9.2 (± 12.4) EU/m3 and 1010 (± 1524) EU/mg. PM10‐2.5 and PM2.5 were significantly correlated in wood stove homes (r = 0.36, P < 0.05). The presence of pets in the homes was associated with PM10‐2.5 but not with endotoxin concentrations. Importantly, none of the other measured home characteristics was a strong predictor of airborne endotoxin, including frequency of residential wood stove usage.  相似文献   

15.
Exposure to particulate matter (PM2.5) from the burning of biomass is associated with increased risk of respiratory disease. In Dhaka, Bangladesh, households that do not burn biomass often still experience high concentrations of PM2.5, but the sources remain unexplained. We characterized the diurnal variation in the concentrations of PM2.5 in 257 households and compared the risk of experiencing high PM2.5 concentrations in biomass and non‐biomass users. Indoor PM2.5 concentrations were estimated every minute over 24 h once a month from April 2009 through April 2010. We found that households that used gas or electricity experienced PM2.5 concentrations exceeding 1000 μg/m3 for a mean of 35 min within a 24‐h period compared with 66 min in biomass‐burning households. In both households that used biomass and those that had no obvious source of particulate matter, the probability of PM2.5 exceeding 1000 μg/m3 were highest during distinct morning, afternoon, and evening periods. In such densely populated settings, indoor pollution in clean fuel households may be determined by biomass used by neighbors, with the highest risk of exposure occurring during cooking periods. Community interventions to reduce biomass use may reduce exposure to high concentrations of PM2.5 in both biomass and non‐biomass using households.  相似文献   

16.
Indoor and outdoor concentrations of PM2.5 were measured for 24 h during heating and non-heating seasons in a rural solid fuel burning Native American community. Household building characteristics were collected during the initial home sampling visit using technician walkthrough questionnaires, and behavioral factors were collected through questionnaires by interviewers. To identify seasonal behavioral factors and household characteristics associated with indoor PM2.5, data were analyzed separately by heating and non-heating seasons using multivariable regression. Concentrations of PM2.5 were significantly higher during the heating season (indoor: 36.2 μg/m3; outdoor: 22.1 μg/m3) compared with the non-heating season (indoor: 14.6 μg/m3; outdoor: 9.3 μg/m3). Heating season indoor PM2.5 was strongly associated with heating fuel type, housing type, indoor pests, use of a climate control unit, number of interior doors, and indoor relative humidity. During the non-heating season, different behavioral and household characteristics were associated with indoor PM2.5 concentrations (indoor smoking and/or burning incense, opening doors and windows, area of surrounding environment, building size and height, and outdoor PM2.5). Homes heated with coal and/or wood, or a combination of coal and/or wood with electricity and/or natural gas had elevated indoor PM2.5 concentrations that exceeded both the EPA ambient standard (35 μg/m3) and the WHO guideline (25 μg/m3).  相似文献   

17.
The aim of this study was to (a) develop a method for converting particle number concentrations (PNC) obtained by Dylos to PM2.5 mass concentrations, (b) compare this conversion with similar methods available in the literature, and (c) compare Dylos PM2.5 obtained using all available conversion methods with gravimetric samples. Data were collected in multiple residences in three European countries using the Dylos and an Aerodynamic Particle Sizer (APS, TSI) in the Netherlands or an optical particle counter (OPC, GRIMM) in Greece. Two statistical fitted curves were developed based on Dylos PNC and either an APS or an OPC particle mass concentrations (PMC). In addition, at the homes of 16 volunteers (UK and Netherlands), Dylos measurements were collected along with gravimetric samples. The Dylos PNC were transformed to PMC using all the fitted curves obtained during this study (and three found in the literature) and were compared with gravimetric samples. The method developed in the present study using an OPC showed the highest correlation (Pearson (R) = 0.63, Concordance (ρc) = 0.61) with gravimetric data. The other methods resulted in an underestimation of PMC compared to gravimetric measurements (R = 0.65‐0.55, ρc = 0.51‐0.24). In conclusion, estimation of PM2.5 concentrations using the Dylos is acceptable for indicative purposes.  相似文献   

18.
A six‐month winter‐spring study was conducted in a suburb of the northern European city of Kuopio, Finland, to identify and quantify factors determining daily personal exposure and home indoor levels of fine particulate matter (PM2.5, diameter <2.5 µm) and its light absorption coefficient (PM2.5abs), a proxy for combustion‐derived black carbon. Moreover, determinants of home indoor ozone (O3) concentration were examined. Local central site outdoor, home indoor, and personal daily levels of pollutants were monitored in this suburb among 37 elderly residents. Outdoor concentrations of the pollutants were significant determinants of their levels in home indoor air and personal exposures. Natural ventilation in the detached and row houses increased personal exposure to PM2.5, but not to PM2.5abs, when compared with mechanical ventilation. Only cooking out of the recorded household activities increased indoor PM2.5. The use of a wood stove room heater or wood‐fired sauna stove was associated with elevated concentrations of personal PM2.5 and PM2.5abs, and indoor PM2.5abs. Candle burning increased daily indoor and personal PM2.5abs, and it was also a determinant of indoor ozone level. In conclusion, relatively short‐lasting wood and candle burning of a few hours increased residents’ daily exposure to potentially hazardous, combustion‐derived carbonaceous particulate matter.  相似文献   

19.
This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I‐80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir‐fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year‐round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM2.5 by 97‐98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor‐generated particles. Systems with MERV13‐16 filter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM2.5 by 93‐98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM2.5. Indoor ozone was 3‐4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM2.5 by 25‐75% when operated over the hour following cooking. The energy for year‐round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.  相似文献   

20.
In the present study, emission indices for NO, NO2, HONO, HCHO, CO, particle mass, and particle numbers including particle size distributions for three different offering candles were determined. The candles investigated showed similar emission characteristics with emission indices (g/kg) in good agreement with former candle emission studies. An average HONO/NOx emission ratio of 6.6 ± 1.1% was obtained, which is much higher compared to most other combustion sources, indicating that candles may be a significant indoor source of this important trace gas. The particle size distributions indicate that the majority of the emitted particles are in the size range 7 - 15 nm. Three modes were observed during burning the candles with very different emission profiles: a “normal burning” mode characterized by low particle number emission rates and small particles; an initial “sooting” behavior after ignition, and a final “smoldering” phase upon candle extinction with higher particle number emission rates and larger particles. The particle emission upon extinction is dependent on the extinction method. The NOx emission indices were applied in a simple box model to calculate typical indoor NOx concentration levels from candle emissions, which were in excellent agreement with direct measurements in a typical indoor environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号