首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
粘附在骨料表面的粘土是劣化聚羧酸减水剂(PCA)分散性能的关键因素。本文采用坍落度法、总有机碳分析仪研究了长江中下游地区常见的粘土矿物——高岭土对掺聚羧酸减水剂的混凝土流动度和吸附性能的影响规律。结果表明:高岭土造成聚羧酸减水剂分散能力的降低,总有机碳(TOC)的分析结果表明高岭土对聚羧酸减水剂的强烈吸附是造成其分散能力下降的根本原因。  相似文献   

2.
本文从聚羧酸系减水剂的主链、侧链和吸附基团等结构入手,介绍了聚羧酸减水剂独有的特点;对聚羧酸减水剂的分子结构特点和分散性能之间的关系进行了阐述,发现聚羧酸减水剂分子量的大小、侧链密度、侧链长度、侧链封端方式、侧链连接方式以及吸附基团对分散性能都有很大的影响;各单一分子结构特点之间对分散性能的影响也是相互制约或叠加的,并不是独立影响的。  相似文献   

3.
聚羧酸系减水剂对水泥分散和水化产物的影响   总被引:1,自引:0,他引:1  
合成了3种聚氧乙烯链长的聚羧酸系减水剂,表征了它们的相对分子质量,并研究了它们对水泥颗粒分散性能和水泥水化产物性质的影响.研究表明:长短支链交替组成的聚羧酸系减水剂对水泥颗粒具有较好的分散性能,聚羧酸系减水剂的分散机理主要是其支链产生的空间位阻作用;掺加聚羧酸系减水剂后,水泥浆体需水量减少,在水化28 d内,水泥熟料的水化速率减小,水化产物数量减少;水化产物的孔径范围变小,硬化水泥石密实程度提高.  相似文献   

4.
通过合理的假设预测了聚羧酸系减水剂(PC)在水泥颗粒表面的吸附形态,并采用超滤膜法将自制PC分离成四种不同分子量范围的分离组分F1(平均分子量为10万以上),F2(5万至10万),F3(1万至5万),F4(1万以下),通过有机碳总分析法及净浆流动度表征了该PC/分离组分的吸附量以及对水泥浆体的分散性。研究结论显示:PC分子呈卷曲状吸附于颗粒的表面,而非直线型,而且随掺量的增加这种卷曲程度逐渐增大;各分离液/PC对基准水泥浆体的分散性大小顺序为:F2F1PC0F3F4;PC在水泥颗粒表面吸附过程属于分级吸附,其中分子量较小的减水剂分子首先吸附到水泥颗粒的表面,而后是分子量较大的分子。  相似文献   

5.
闫艳 《山西建材》2013,(3):16-18
研究了聚合反应条件对聚羧酸系减水剂分散性能的影响。结果表明,在聚合反应过程中,加热方式、聚合反应温度、单体溶液的滴加速度等因素均会对聚羧酸系减水剂的分散性能产生一定的影响。减水剂在水泥净浆中的掺量不同时,各因素的作用效果也不同。  相似文献   

6.
通过外加剂的匀质性试验、胶砂强度与收缩性能试验以及混凝土性能试验,对聚羧酸系减水剂与萘系减水剂的性能进行了对比。研究表明,与萘系减水剂相比,聚羧酸系减水剂在低掺量的条件下,不但有着更高的减水率,而且保塑能力强;所配制的胶砂及混凝土的强度增长显著,低收缩、体积稳定性好。该系列减水剂在厦门嵩屿2#泊位码头胸墙面层的混凝土工程中的应用取得了良好的效果。聚羧酸系减水剂特别适合高强混凝土、高性能混凝土、自密实混凝土、清水混凝土、大体积混凝土以及预制混凝土工程。  相似文献   

7.
段建平  吕生华  高瑞军  曹强  李第 《混凝土》2011,(11):59-63,66
从减水剂中锚固基团种类,侧链和分子构型等方面,介绍了聚羧酸系减水剂的特点,综述了聚羧酸减水剂分子结构与性能关系,重点阐释了聚羧酸减水剂分子结构特点、吸附的影响因素、吸附模型和分散模型等研究现状.  相似文献   

8.
实际工程中,使用聚羧酸系减水剂比使用萘系减水剂有多方面的优势,它可以降低混凝土的水灰比和胶凝材料的使用量,同时改善了混凝土的工作性.  相似文献   

9.
利用等温吸附、XRD、DTA和化学分析研究了硫酸盐相容型聚羧酸减水剂(PCA)与水泥颗粒之间的相互作用机理。结果表明,聚羧酸减水剂能加速水泥水化初期钙矾石(AFt)和单硫型水化硫铝酸钙(AFm)的形成,并且当水泥中存在石灰石微粉时,还可加速早期单碳型水化硫铝酸钙的形成,从而降低了水泥颗粒对PCA的吸附。由于建立了静电斥力与空间位阻作用协同作用机制,PCA在获得高分散性的同时,使混凝土具有优异的坍落度经时保持性能。硫酸盐相容型聚羧酸减水剂与萘系高效减水剂相容,可共同使用。  相似文献   

10.
硫酸盐对聚羧酸减水剂分散性能的影响   总被引:1,自引:1,他引:1  
在胶凝材料中掺入不同类型的硫酸盐,采用净浆流动度、总有机碳(TOC)及ζ电位等试验,研究了硫酸盐种类及其掺量对不同结构聚羧酸减水剂分散性能的影响,探讨了硫酸盐影响聚羧酸减水剂分散性能的机理,并提出改善措施.结果表明:二水硫酸钙掺量达到胶凝材料质量的3.6%以上时,对不同结构聚羧酸减水剂的减水效果均有所降低.硫酸钠掺量对质量不同结构聚羧酸减水剂的净浆流动度均有很大影响,当其掺量为胶凝材料质量的1%时,相应浆体基本失去流动性;硫酸钠掺量为胶凝材料质量的3%时,溶液中有机碳的含量降低了23%;硝酸钡的加入能使溶液中的有机碳含量基本恢复到未掺硫酸钠时的程度,流动度得到改善.电泳试验表明:硫酸钠的加入对浆体ζ电位有很大影响,其掺量越高,ζ电位绝对值愈小,分散性愈差;当加入硝酸钡后,浆体ζ电位绝对值有较大提高.  相似文献   

11.
通过研究C3A-Ca SO4·2H2O体系在不同分子结构的聚羧酸减水剂存在的条件下的吸附性能和水化历程,结合TOC、XRD、SEM等检测手段分析了分子结构对体系吸附性能及水化行为的影响机理。试验结果表明,聚羧酸减水剂分子结构中羧基数量增加会促进体系对减水剂的吸附;而减水剂分子结构中羟基数量增加,体系对减水剂的吸附量则会减少;而减水剂分子结构中酯基会在水化过程中水解生成羧基和羟基,改善体系的吸附和分散性能。体系对聚羧酸减水剂分子的吸附会一定程度的抑制体系水化反应。  相似文献   

12.
依据表面活性剂的分子结构性能。研究了以氢氧化钠为催化剂,以对氨基苯磺酸钠、苯酚及甲醛等为原料,直接缩聚成氨基磺酸盐系超塑化剂的配方及工艺参数。其产品超塑化性能良好,分子结构稳定,存放两年无交联现象。  相似文献   

13.
磺酸基是聚羧酸减水剂中的主导官能团,目前对磺酸基团单体的选择较混乱.对乙烯基磺酸钠、丙烯基磺酸钠、甲基丙烯磺酸钠、苯乙烯磺酸钠、2-丙烯酰胺-2-甲基丙磺酸对聚羧酸减水剂性能的影响进行正交实验,采用SPSS软件分析了各因素的影响,并用多元线性回归得出掺减水剂水泥净浆流动度与磺酸基单体用量、丙烯酸用量、引发剂用量、链转移剂用量的方程.  相似文献   

14.
VIVID-500聚羧酸超塑化剂性能评价   总被引:4,自引:0,他引:4  
研制开发了一种新型的聚羧酸超塑化剂——VIVID-500,利用各种手段对其性能进行了评价.结果表明VIVID-500聚羧酸超塑化剂减水率高、保塑性好、水泥适应性广,同时达到了符合高效减水剂、早强减水剂、缓凝减水剂的国家标准,被证明是一种多功能减水剂,其性能已达到国外同类产品水平。  相似文献   

15.
简要地综述了聚羧酸系超塑化剂的制备方法、作用机理、分子结构与性能之间的关系,阐述了聚羧酸系超塑化剂在实际工程应用中的一些优点和存在的问题,详细介绍了聚羧酸系超塑化剂与水泥相容性以及对混凝土的流动性、含气量和耐久性等因素的影响。  相似文献   

16.
聚羧酸盐系高性能减水剂研究进展及评述   总被引:7,自引:0,他引:7  
聚羧酸盐系高性能减水剂是当今混凝土外加剂研究中较为前沿的课题之一,该类减水剂具有低掺量、高减水率、抑制坍落度经时损失等特点.阐述了聚羧酸盐系高效减水剂的国内外研究现状、结构性能、合成方法、对混凝土的作用机理及其在工程中的应用,并对其研究进行了评述.  相似文献   

17.
采用一种多功能型表面活性剂来改性聚羧酸系高效减水剂.试验结果表明,该改性剂与聚羧酸系减水剂母液具有很好的相容性,对聚羧酸系减水剂的减水效果和坍落度保持效果都有非常明显的改善,并且具有很好的增强效果,与试验的3种水泥均具有较好的相容性.使用改性聚羧酸系减水剂配制C30高性能混凝土具有很好的流态效果,同时在高流态下保持了较高的力学性能及优异的耐久性能,在重大工程上得到了很好的应用.  相似文献   

18.
讨论了新型混凝土聚羧酸类高性能减水剂的中间大分子单体--聚乙二醇甲基丙烯酸酯的合成.通过对不同分子量的聚乙二醇与甲基丙烯酸在不同摩尔比、不同反应温度、不同阻聚剂掺量、不同催化剂掺量、不同反应时间等试验条件下的研究,确定了聚乙二醇分子量为1 000、酸醇摩尔比为1.2:1、反应温度为100 ℃、阻聚剂掺量为0.8%、催化剂掺量为3%、反应时间为6 h的甲基丙烯酸全连续滴加的最佳酯化工艺,酯化率为95%以上.此外,通过傅里叶变换红外光谱对大分子单体进行了表征,结果表明已得到预期结构的聚乙二醇单甲基丙烯酸酯大分子单体.  相似文献   

19.
减水剂中磺酸基和羧基吸附特点及其影响因素探讨   总被引:1,自引:0,他引:1  
用紫外分光光度计测定了不同离子环境下含羧基的甲基丙烯酸(MA)和含磺酸基的甲基丙烯磺酸钠(MASA)在水泥模拟物CaCO3上的吸附特点,从而判断减水剂中羧基和磺酸根的吸附特点和区别。研究发现,溶液环境中不同离子对两者的吸附造成的影响不同,磺酸根吸附量大于羧基;硫酸根对羧基吸附量降低大于磺酸基;增加pH能增加羧基的吸附量,但对磺酸基影响很小。研究为聚羧酸减水剂和萘系减水剂在对水泥的适应性和流动经时变化的差别提供了一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号