首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 562 毫秒
1.
通过对杭州庆春路过江隧道泥水盾构施工地面沉降监测数据的分析,总结了地面沉降的特点及影响因素,并结合实测数据给出了地面沉降的修正双曲线预测公式.分析表明:Peck公式适用于杭州软土地层中泥水盾构施工引起的地面沉降预测,其中地面沉降槽宽度参数K取值0.25~0.32,地层损失率V1取值0.04%~0.33%.地面沉降主要为盾构脱离0~5 d或6d内的盾尾沉降以及扰动土体长期固结沉降,分别约占总沉降量的57.27%和41.08%.适当提高切口泥水及同步注浆压力使地面微隆,可以抵消部分地层损失,减少地面沉降.由地层损失引起的横断面地面沉降曲线较规则,基本呈现高斯曲线分布;而地面隆起变形较无规则,会使沉降曲线偏离高斯曲线分布.引入新参数C后的修正双曲线模型可用于泥水盾构软土地层中施工引起的地面沉降的预测.  相似文献   

2.
基于地层损失的盾构隧道地面沉降控制   总被引:1,自引:0,他引:1  
依据盾构推进各阶段特征,分析了盾构推进引发地面沉降的机理。基于地层损失,建立了盾构隧道地面沉降控制体系。该体系综合了土层特性和盾构隧道设计参数,通过设定地层损失率,利用经验公式对隧道纵横两个方向的地面沉降做出预测,基于沉降控制指标反算需要控制的地层损失率,用于控制沉降;利用数值模拟分析隧道施工过程,基于地面沉降三维曲面,分析地层损失及施工控制参数对地面沉降的影响。对比分析设定地层损失率计算结果与现场监测数据,建立地面沉降—地层损失率—施工参数之间的联系,通过施工参数控制实现地面沉降的控制。  相似文献   

3.
 广州市轨道交通6#线东山口站左线站台隧道采用盾构先行过站后扩挖方案修建,地面环境复杂,且建筑物桩基所处地层含水量高、孔隙比大,盾构隧道扩挖施工易引起较大地面沉降。应用数值模拟方法对扩挖施工诱发地层失水引起的地表沉降以及现场扩挖施工变形控制措施的实施效果进行预测,并且运用叠加原理将得到的最终地表沉降与实测数据进行对比分析。结果显示:地层失水沉降及扩挖施工沉降比例为2∶3;盾构隧道台阶法扩挖上台阶施工地表沉降量较大,两台阶两部与两台阶四部扩挖法地表沉降差别不大,盾构扩挖法修建左线站台隧道最大地表沉降为右线CRD法站台隧道的65%;拱部大管棚、袖阀管注浆复合超前预支护增加了地表沉降槽宽度,减小了地表沉降量及倾斜;盾构轴线偏移方案减小了围岩塑形区范围,更好地发挥拱部超前预支护的效果。  相似文献   

4.
砂卵石地层普遍存在地下空洞,在该区域进行盾构隧道施工容易扰动砂卵石地层,若含有空洞则可能会引发空洞塌陷破坏,造成较大的地面沉降。基于离散元软件Yade,建立含空洞砂卵石地层单线盾构隧道施工模型,研究单空洞位置、单空洞直径、多空洞的组合形式对地面沉降的影响,得到空洞对盾构隧道施工引起的地面沉降的影响规律。研究结果表明,含空洞地层中,当空洞位于隧道正上方引起的地面沉降最大,而空洞位于隧道正侧方引起的地面沉降最小;无论空洞处于哪种位置,空洞直径越大,引起的地面沉降越大;空洞位于隧道正上方或者正侧方时,地面沉降值与空洞直径呈现近似二次函数关系,空洞在隧道斜上方时,在某些区间内地面沉降值与空洞直径呈现线性关系;空洞数量越多,引起的地面沉降越大。两空洞工况下,空洞分别位于隧道正上方与斜上方时引起的地面沉降最大。三空洞工况下,空洞分别位于正上方、正侧方、正侧方时引起的地面沉降最大。  相似文献   

5.
收集中国已有地表沉降监测数据及土体损失率统计分析数据,结合长株潭城际高铁Ⅱ标树木岭盾构隧道进口树木林车站区间16个监测断面数据及其详细地层信息,分析土压平衡盾构隧道施工引起的地层损失规律影响因素。分析表明,土压平衡盾构隧道施工引起的土体损失率的累积概率较好的服从对数正态分布;土体损失率随着埋深或深径比的增大,呈现逐渐减小并趋于稳定的趋势,且两者关系可近似采用幂函数拟合;当H大于20m或H/D大于3.25时,土体损失率基本稳定在0.75%附近,且对应地层信息表明盾构隧道施工时其上覆岩层呈现拱效应,说明盾构隧道施工中其顶部土层成拱效应可较好的控制土体损失;土体损失率或名义土体损失率随着盾构开挖通过时间的增加而逐渐增大,且趋于稳定,说明固结变形对名义土体损失率的影响较大,最大可达瞬时沉降所引起土体损失率的4.58倍。  相似文献   

6.
隧道盾构法施工和其他方法一样容易产生地面沉降,在人口密集、街道狭窄的市区该矛盾尤为突出。本文根据轨道交通明珠线临平路—长阳路地铁隧道盾构施工实践,分析地面沉降原因,提出解决对策。1 地面沉降原因在需要控制地层移动地区进行盾构施工,必须了解地层移动的规律,尽可能准确地预测沉降量、沉降范围、沉降曲线最大坡度及最小曲率半径和对附近建筑设施的影响,并分析影响沉降的各种因素,以求施工中减少地层移动。经分析研究认为,引起地面沉降的基本原因是盾构施工引起的地层损  相似文献   

7.
以广深港客运专线隧道盾构施工、下穿深圳地铁3号线既有隧道为工程背景,利用FLAC3D软件进行施工过程模拟。探讨了施工过程中新建隧道周边地层位移、既有隧道地面、底部沉降的分布性状以及新建与既有隧道的安全。结果表明,最大沉降点都位于新建与既有隧道的中心线上,沉降分布以各自中心线为对称轴呈左右对称性状,在本地质条件和特定盾构推力情况下,地面沉降和隆起满足要求,既有隧道结构底板沉降满足运营要求。  相似文献   

8.
为了研究大直径泥水平衡盾构施工引起的地层变形,基于Mindlin解,推导了在泥浆重度影响下开挖面不均匀附加压力、不均匀分布下盾壳摩擦力、环向消散下盾尾注浆压力引起的地层变形,叠加地层损失引起的地层变形,获得了大直径泥水平衡盾构施工引起地层变形的计算公式,典型工程实例结果表明:①不考虑泥浆重度、不均匀分布和环向消散等因素会高估地面纵向位移的隆起值而低估沉降值,本文计算方法所得地面纵向位移与实测值吻合较好;②本文方法计算所得的大直径泥水平衡盾构施工引起的地面横向位移与实测变形基本吻合,且符合高斯曲线正态分布。研究成果可为控制和预测大直径盾构隧道施工引起的地层位移提供理论指导。  相似文献   

9.
盾构隧道的施工会引起周边地层的沉降和位移,从而对周边建构筑物产生影响,因此在项目实施前通常要对隧道开挖的影响进行评估。依托浙江宁波某在建管廊盾构工程项目,利用MIDAS GTS商业有限元分析软件模拟盾构隧道临近既有电力工作井施工过程,通过改变周边地层(等代层)刚度反映盾构施工扰动。数值分析研究表明,地层损失率对电力井的内力变形影响非常显著,随着地层损失率的增加,电力井最大沉降量、电力井壁最大应力、底板最大应力呈显著增加趋势。结合当地相关文献资料,推算盾构施工使电力工作井产生的最大沉降值为4mm,最大差异沉降为0.00032,最大应力增量为453kPa。预测结果表明,盾构隧道的掘进对电力工作井的影响处于可接受范围内,在施工过程中应制定合理的监控量测方案,需要密切关注电力工作井与盾构隧道的安全状态。  相似文献   

10.
盾构施工引起地面长期沉降的理论计算研究   总被引:4,自引:1,他引:3  
 对盾构施工引起的隧道轴线上方地面工后沉降进行研究,结果表明,土体开挖卸荷引起应力释放,产生初始超孔隙水压力,其分布呈三角形。假定衬砌不排水、土体为单面排水、压缩层厚度为隧道覆土厚度,采用太沙基一维固结理论,得到地面工后固结沉降的理论计算公式。假定地面长期沉降主要由施工期间沉降和工后固结沉降组成,进而得到地面长期沉降的理论计算公式。算例分析结果表明:该方法的预测值与实测值非常吻合;上海软土地区盾构隧道施工引起的地面长期沉降相当显著,最终地面沉降量在80 mm以上,固结沉降占总沉降量的80%~90%;按最小覆土深度5 m计算,需要2 a以上地面沉降才能最终稳定。  相似文献   

11.
盾构隧道致地层沉降的物理模型试验研究   总被引:1,自引:0,他引:1  
通过不同隧道埋深、支护压力和掘进速度的盾构隧道施工地表沉降的大型物理模型试验,总结不同条件下的地表沉降规律,分析土压力的变化特性,归纳不同条件下的地表沉降曲线;探讨隧道埋深、支护压力和掘进速度对地表沉降值的影响,推导地表横断面沉降槽计算的经验公式.结果表明:随着隧道埋深增加,地表沉降值减小,地表横向沉降槽影响范围加宽;...  相似文献   

12.
盾构法隧道施工引起的土体变形预测   总被引:10,自引:2,他引:8  
 理论分析表明,不同土质条件下盾构法隧道施工引起的土体移动模型有区别。基于盾构法隧道统一土体移动模型,假定土体不排水,采用N. Loganathan等提出的研究方法,通过对Verriujt计算公式进行修正,推导得到盾构施工过程中由于土体损失引起的土体变形二维解,该方法适用于施工阶段。算例分析表明:所给出方法的计算结果与实测值较吻合,适用于从流塑~坚硬状态的所有黏性土。Loganathan公式只适用于流塑状态的黏性土,当土质较硬时,计算所得到的土体沉降要比实测值小;盾构施工引起的隧道上方土体沉降从地面向下呈非线性增大,在隧道顶部达到最大,离隧道越近,增长越快;隧道周围土体产生向隧道侧的水平位移,从地面向下逐渐增大,在略高于隧道轴线附近达到最大值,再逐渐减小直到0。离隧道越近,土体水平位移越大。  相似文献   

13.
采用室内模型试验研究了不同地层损失率下的地表沉降及地中位移分布,揭示了砂卵石地层圆形隧道施工地层损失引起的土体移动特性及传播机制。试验结果表明:不同地层损失下地表沉降槽同样具有高斯分布函数形态特征,距隧道中心线1D范围为地层沉降的主要区域,该区域沉降受地层损失的影响最大;水平位移量值较大,最大水平位移出现在隧道左侧拱肩斜向上至地表的区域;地层颗粒的移动方向总体指向地层损失产生区域,同时受地层损失的大小、形态及分布特征等因素的影响;地表及地中沉降槽宽度系数随地层损失率的增大而缓慢增大。研究表明,不同地层损失下土体的松动、塌落及重新固结是砂卵石地层位移的主要原因,由于地层损失导致砂卵石地层物性参数的改变和颗粒在水平方向的移动和填充作用,使得地表及地中沉降槽宽度系数随地层损失率的增大而改变。  相似文献   

14.
城市地铁盾构隧道的横向变形特点是确定工程影响区域和影响范围的重要依据。对我国22个建设城市的58条地铁线路、126个区间、964个地表横向沉降槽资料进行分析,研究了地铁双线盾构区间隧道的地表横向变形特点。根据地层条件的不同,对不同地层区域的沉降槽Peck公式拟合参数进行统计分析,得出了地层损失率和宽度参数的分布形态、相关统计值以及与隧道相对埋深的相关性。研究结果表明:(1)地层损失率和宽度参数的数理统计结果可以很好地指导不同地层区域地铁双线盾构隧道工程的影响区划分和影响范围的确定;(2)建议各地结合地层条件特点,对地表沉降槽进行深入研究,以提出更为适宜的地表横向沉降槽预测参数。  相似文献   

15.
考虑盾构隧道埋深影响和岩土特性影响的地表变形计算   总被引:1,自引:0,他引:1  
盾构施工引起地层变形的众多计算方法中,随机介质理论法和Peck法是我国应用较为广泛的两种实用方法,但这两种方法的计算参数均不太容易确定。根据46例工程实测资料,绘制出地表最大沉降与隧道相对埋深的关系图。结果表明:当盾构隧道相对埋深小于5时,盾构施工引起的地表最大沉降值变化较大;当盾构隧道相对埋深大于5时,其对地表最大沉降的影响较小。对于大部分浅埋城市地铁隧道而言,应该考虑盾构隧道相对埋深对地层变形的影响。基于盾构施工引起地层移动不均匀模型的地表最大沉降计算式,依据随机介质理论法和Peck法,推导出考虑土质软硬、隧道半径和埋深影响的地层变形实用计算方法,并通过对5个工程实例的分析,验证此计算方法的合理性。  相似文献   

16.
长沙地铁典型地层盾构施工地表沉降分析与预测   总被引:2,自引:0,他引:2  
分析了长沙地铁二号线沿线地层特征,以及盾构施工状况,基于长沙地铁土压平衡盾构穿越典型地层100多个地表沉降观测断面大量的地表沉降实测数据的统计分析,探讨采用Peck公式预测长沙地铁施工引起的地表横向沉降槽的可行性,得出了预测长沙地铁土压平衡盾构施工引起的地表沉降基本参数的取值范围,即地表沉降槽宽度系数(K)0.3-0.6,地层损失率0.5%-1.25%。应用本文获得的地表移动参数,采用Peck公式可以较好预测长沙地铁施工引起的地表沉降,及其对于邻近结构物的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号