首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
结合某小间距相邻基坑开挖施工监测数据,分析了杭州深厚软土层紧邻基坑施工过程相邻位置地表沉降、立柱沉降、坑外水位、支撑轴力和深层土体水平位移的影响,结果表明:先行施工基坑受后继施工基坑的影响较小,后继施工基坑受先行施工基坑影响大,两基坑相邻侧土体的竖向位移与水平位移都较非相邻侧土体小,后继基坑开挖使得先行开挖基坑支撑轴力明显减小;先行施工基坑深层土体最大水平位移在最终开挖面附近,后继开挖基坑深层土体最大水平位移下移最终开挖面以下。  相似文献   

2.
基坑围护结构侧向变形引起的土体侧移和沉降,会对坑外桩基的水平和竖向承载性状造成影响。基于影像源法,在综合考虑围护结构变形、地表沉降以及围护结构变形方向对坑外土体位移影响的基础上,对基坑围护结构侧向变形引起的坑外土体侧移和沉降计算方法展开了研究。首先,采用分段法,分别研究了围护结构变形和地表沉降作用下坑外土体侧移及深层沉降;然后,基于叠加原理,针对坑外任意点位置土体侧移和沉降,推导出了适用于不同基坑围护结构变形模式的相关计算公式;最后,将采用本文方法得到的坑外土体侧移及沉降计算结果同实测结果及现有理论方法的计算结果进行对比分析。结果表明,采用本文方法得到的坑外土体侧移及深层沉降与现场实测结果吻合度更高,从而验证了本文方法的可行性。  相似文献   

3.
通过高灵敏度软土地区两层地下室基坑采用圆环形内支撑的设计工程实例,对比分析了深层土体位移、坑外路面沉降和圆环形支撑轴力的实测结果与计算值的差异。通过实测数据可知,第一道圆环梁轴力的实测值远大于设计值,尤其是挖土无法做到均匀开挖时更应提高支撑梁的设计余量;由于土体高灵敏度、受扰动后时空效应显著,基坑开挖对周边环境的影响范围可达5倍开挖深度;坑边深层土体位移最大值可达设计值的1.8倍。  相似文献   

4.
通过对三维与平面应变状态下无支撑及多道支撑的基坑开挖模拟,对基坑的坑角效应进行较为深入的研究,包括考虑几何尺寸对基坑角部效应的影响,具体表现为对墙体变形及坑外土体位移的影响。当基坑开挖宽度较大时,相邻墙体的作用较强,基坑角部效应范围较大,约为5~7倍开挖深度,此时应考虑凸出现象的影响,同时坑外土体相应位置也将产生较大位移。  相似文献   

5.
考虑降水、支护结构变形以及基坑隆起3个因素引起的基坑周围土体的沉降,根据降水引起土体沉降的机理,运用修正的分层总和法单独计算出由降水引起的周围土体沉降。通过研究基坑开挖引起坑外土体沉降的规律,推导出由基坑开挖引起的坑外土体沉降理论公式。把降水引起的沉降及基坑开挖引起的沉降进行叠加,加入修正系数,最终以简化的理论公式合理地计算出基坑周围土体沉降。具体工程验证表明,推导的理论解析解与实测数据十分接近,能有效预估基坑周围土体沉降,为施工方案编制提供可靠的理论依据,最大限度减少基坑施工对周围环境的影响。  相似文献   

6.
结合具体工程实测,对土钉墙支护的深基坑变形性态进行了分析,并得出以下主要结论:坑外土体深层水平位移曲线呈悬臂型分布,最大水平位移发生在地表处,在基坑开挖深度附近,其土体的水平位移逐渐趋于零;坑外建筑物沉降在0.5倍开挖深度范围内的建筑物沉降值最为显著,而在(1.0~2.0)倍开挖深度范围内的建筑物沉降值则明显较小。  相似文献   

7.
对于深基坑支护工程,当基坑周边不同位置开挖深度不同时,基坑四周的土压力是不均衡的,围护桩的变形趋势也是不同的。当围护桩出现往坑外位移趋势时,作用在围护桩上的土压力应按被动土压力考虑,而不是主动土压力。当围护桩外侧的被动土压力不足以抵抗支撑力时,会出现坑外土体破坏,特别是软土深基坑。此时应对坑外土体进行加固处理,或者调整支撑体系改变支撑力的传递路线。  相似文献   

8.
基坑开挖引起的周边土体三维位移场的简化分析   总被引:1,自引:0,他引:1  
虽然不少经验方法可以用来计算基坑开挖引起的地表沉降以及围护墙水平位移,但是目前基坑开挖引起的地表以下土体位移场的预测缺乏简单的计算方法,而主要依赖于有限单元法。有限元分析中如何选用合理的参数来准确计算开挖引起的土体位移一直是个难题。在有限单元法的基础上,考虑土体小应变特性,基于芝加哥地区实际基坑工程的实测数据,通过反分析方法确定了能够准确计算基坑开挖引起的土体位移的合理计算参数。利用这些参数较为准确地计算了基坑开挖引起的土体位移,总结了基坑周边土体三维位移场的衰减规律,并由统一表达式来表示,同时结合围护墙水平变形与墙后地表沉降的经验公式,通过二次拟合提出了基坑周边土体三维位移场的简化计算方法。通过与有限元计算结果以及实测结果的对比,验证了该方法的合理性。  相似文献   

9.
为研究城际铁路某车站基坑开挖过程,以MIDAS/GTS有限元软件为基础,建立了某车站基坑开挖三维数字模型,采用修正Mohr-Coulomb模型模拟分层开挖过程,计算并分析了每层开挖对基坑土体和围护结构的影响。结果表明:基坑开挖过程中,会造成基坑周围土体沉降,基坑内底部土体隆起;基坑从第1层开挖至坑底,坑外土体最大沉降为0.21 mm,坑内土体最大隆起为3.99 mm。在基坑开挖至坑底时,围护结构的竖向位移和水平位移都最大,分别为0.13 mm(临近坑底隆起部分的围护)和0.64 mm。  相似文献   

10.
基坑开挖过程中,基坑周边土体的原有的应力场的状态将会发生改变,周围土体将会产生局部变形和塑性破坏。其对临近建筑的影响主要表现在以下两个方面:一方面基坑开挖会引起坑外土体向坑内移动,使得坑外的建筑的基础产生附加位移和弯矩;另一方面基坑开挖会导致基坑周边产生不均匀沉降,从而引起建筑基础或墙体的开裂。本文以广州南沙某两层地下室基坑工程项目为例,结合有限元软件Midas GTS针对基坑开挖对临近建筑物的影响进行模拟分析,分析得出基坑支护结构的变形和受力情况及其对建筑物的变化影响。其分析成果对优化设计和指导施工具有一定的意义。  相似文献   

11.
根据基坑开挖应力路径的室内试验和现场实测数据,从土工试验方法、土体强度指标、地基土水平反力系数等方面分析了现在基坑工程支挡结构设计存在的一些问题。研究成果如下:支挡结构设计参数的获取应考虑主动区及被动区地基土的应力路径,并恢复地基土的固结状态。基坑开挖后主动区和浅部被动区土体抵抗剪切破坏的能力大于以常规CU强度指标的计算结果,这有利于工程安全;深部被动区土体抵抗剪切破坏的能力小于以常规CU强度指标的计算结果,对于地基土被动抗力发挥较大的工程,需验算嵌固深度,确保被动抗力小于极限被动土压力。定义了被动区基坑开挖"强影响区",并给出了该区域深度的计算方法。以相应应力路径下的土体割线模量值作为地基土水平反力系数,讨论推导了作用于支挡结构上的分布土反力与支挡结构水平位移的计算公式,其计算结果更接近工程实际。本次研究对以变形控制为主的基坑设计具有较好的指导意义。  相似文献   

12.
胡琦  凌道盛  程泽海  陈峥 《岩土工程学报》2013,35(11):2139-2143
温度场对深基坑围护结构受力变形的影响不仅是温度场与应力场的热力耦合问题,同时也是水、土、围护结构共同作用问题。通过对日本东京新丰洲变电所深基坑工程实测结果的反分析,确定了温度场对环形深基坑围护结构受力变形影响的分析方法,获得了温度场变化引起的围护结构受力变形模式,并将研究成果应用于上海世博变深基坑围护结构受力变形分析。分析结果表明:基坑开挖后,围护结构的内侧面暴露在大气中,受大气温度变化的影响,地连墙内外侧存在温度差,且不同位置、不同施工阶段,地连墙的温度场不同;开挖面以上的地连墙没有坑内土体的约束作用,其环向应力的大小主要取决于坑外水、土压力的作用,温度下降时,地连墙向坑内收缩变形;开挖面以下及开挖面附近的墙体,墙体收缩变形受到坑内土体的约束,温度下降时,地连墙的环向应力减小。  相似文献   

13.
上海陆家嘴地区超深大基坑邻近地层变形的实测分析   总被引:1,自引:0,他引:1  
刘波 《岩土工程学报》2018,40(10):1950-1958
结合上海国际金融中心超大体量卸载、超深开挖深度、超长降水周期的基坑工程实践,通过对邻近地层变形的信息化监测,研究上海陆家嘴地区超深大基坑在顺逆作同步交叉实施条件下邻近地层的时空位移特征,初步探讨其变形机理和影响因素。研究表明:重车动载对坑外地表沉降影响较大,地墙隆起对0.1H范围内的地表土体拖带上抬;地表沉降主要受软弱土开挖和承压井降水影响凹槽分布,纵向地表沉降空间效应明显,受顺逆作同步交叉实施影响差异沉降突出;坑外地层侧移角部效应明显,形成水平方向的土拱作用,并与系统刚度和土体硬度呈正比;坑内土体强隆起范围远超开挖面下1倍挖深,立柱隆起在第三和第五层土方开挖时发展速率明显较快;坑外设计挖深上部地层以斜向下位移为主,下部地层以斜向上位移为主;基坑土方开挖阶段,坑内地层卸荷隆起为主流动补偿为辅,坑外设计挖深以上地层土体流动补偿和承压井降水固结沉降均显著,而设计挖深以下地层以卸荷隆起为主兼有少量流动补偿。  相似文献   

14.
逆作法技术广泛应用于软土地区敏感环境下的深大基坑工程施工。虽然基于连续介质力学的三维实体有限元方法已逐渐被用于分析评估深开挖对周围环境的影响,工程实用中支护结构的内力变形分析仍采用基于梁–土弹簧体系的弹性抗力法,而传统的支护结构弹性抗力法不能考虑逆作法基坑复杂施工因素的影响。以杭州某逆作法深大基坑工程为案例,结合现场实测数据,通过PLAXIS平面有限元分析与弹性抗力法反分析,得到逆作法深大基坑中盆边留土、坑底工程桩作用和蠕变影响的杭州软黏土等效水平基床比例系数m的拟合公式,提出了考虑逆作法复杂施工因素影响的基坑三维梁系有限元分析方法。研究表明,该方法的计算结果比现有方法更合理;对于深厚软黏土逆作法基坑工程,土体蠕变对基坑变形影响显著。  相似文献   

15.
软土地基临江特大型相邻深基坑同期施工监测分析   总被引:1,自引:0,他引:1  
 结合软土地基临江两相邻深基坑施工监测数据,分析两基坑同期开挖过程中邻近位置围护墙变形、支撑轴力和立柱沉降受到的影响,分析结果表明:相邻位置中部的围护墙变形呈增大趋势,角部及远离相邻位置的围护墙变形受邻近基坑影响较小;相邻基坑开挖对邻近位置的围护墙顶竖向位移影响较大,基坑距离越小,相邻位置围护墙顶水平位移越大;邻近基坑处支撑轴力达峰值后呈变小趋势,立柱竖向位移值呈加大趋势;与已有理论对比发现基坑相邻位置围护结构变形不同于独立基坑开挖的情况。  相似文献   

16.
天津某深基坑工程施工监测及数值模拟分析   总被引:7,自引:0,他引:7  
介绍了天津铜锣湾广场深基坑工程开挖实例。通过对深基坑开挖过程中的支护结构内力、坑周土体水平位移等的现场监测和数值模拟分析,讨论了基坑开挖过程中支护结构受力的特点及其对周围环境的影响,得到基坑周边土体水平位移的变化规律,为考虑施工因素的深基坑开挖及支护结构设计提供了依据。分析表明:土方开挖对基坑周围土体的影响范围约为两倍的开挖深度;开挖过程中土体及围护桩最大位移位置基本上都处于基坑开挖面附近;在基坑施工过程中,应该尽量减小无支撑暴露的时间,加快底板浇注,防止因土体流变而产生过大的位移;对于环梁支撑体系,如果支撑布置不规则,会造成受力不均,容易产生较大的弯矩值,会对环梁支护结构产生不利影响。  相似文献   

17.
选取典型成层地基场地并设计试坑开挖卸荷试验,开展了基于静力触探(CPT)测试的基坑开挖卸荷单桩水平承载力损失程度预测研究。通过在试坑开挖卸荷前后进行CPT原位测试,得到了试坑开挖卸荷前后的CPT贯入锥尖参数变化规律。进而基于CPT测试p–y模型研究了基坑开挖卸荷前后邻近既有单桩的水平承载力损失及桩身弯矩分布特征。分别考察了基坑开挖卸荷后邻近桩基试桩加载模式下的残余水平承载力和桩顶加载联合土体位移共同作用下的卸荷桩基水平承载特性。研究表明,依据真实卸荷土体CPT参数更能准确预测桩基水平承载力损失程度及损失特征,卸荷桩设计阶段须同时考虑卸荷桩较自由场地桩基的水平承载力损失及土体运动位移对桩基水平承载的影响。以上研究为合理确定基坑开挖引起的既有桩基水平承载力损失提供了一种技术思路,同时对卸荷桩水平承载性能评价具有参考意义。  相似文献   

18.
采用合适的计算方法确定有效的围护方案是基坑设计中的难点。以南京纬三路过江隧道江北盾构工作始发井为依托,采用空间地基板法反演分析得到各地层m值,通过编制DLOAD子程序实现主动区与被动区的判别和相应荷载的施加,得到坑外降水条件下软土地层深大盾构工作井围护体系的受力与变形特征。计算结果与现场实测值较为吻合,从而证明采用空间地基板法配合反演得到的地层m值可有效预测工作井围护体系的变形与受力特征。为进一步优化设计方案,选定连续墙厚度、支撑截面尺寸及底板以下5 m范围内土体m值3个参数,通过正交试验进行参数分析,得到影响连续墙水平位移及支撑轴力的主要因素。计算方法及相关计算结果可为同类工程设计提供参考。  相似文献   

19.
深基坑工程开挖安全性的数值分析   总被引:3,自引:0,他引:3  
采用数值模拟手段对某基坑采用已定开挖方法及支护方式情况下的基坑安全性问题进行了探讨,全面分析了基坑在开挖过程中的土体位移、已有基础沉降、连续墙及锚杆受力。计算结果表明:该基坑侧壁土体的最大水平位移和垂直位移分别仅为1.50 cm和1.29 cm;已有建筑物基础底面在开挖过程中有升有降,连续墙在水平方向上的位移随深度延伸有时增加有时减小,呈现非单调的变化规律。由于这些量的值在数值都较小,因此可以认为在基坑开挖过程中,基坑支护体系和该已有建筑物均是安全的。  相似文献   

20.
刘克文  崔力  林伟  张洪宽 《矿产勘查》2018,9(5):1049-1054
软土地区深大基坑开挖对周围土体及构筑物的位移有重要影响。以昆明市某软土区圆形基坑工程为背景,通过分析基坑支护结构、周围土体和动荷载作用下构筑物的位移监测数据,系统研究基坑开挖过程中位移变化的时空效应。结果表明:地表土体位移随着与基坑的横向距离不断增加而减小且基坑开挖对地表土体沉降量的影响范围大于对水平位移的影响范围;当有动荷载作用于软土区基坑周围构筑物时,基坑开挖对构筑物的位移有相对较大的影响;在基坑周围一定范围内,同一点处的水平位移和沉降量的变化具有相关性;基坑周围土体水平位移随深度增加而减小并逐渐趋于0。研究成果拟为类似工程提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号