首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This paper focuses on both the monitoring of the dynamic response of steel buildings with and without brace elements and the importance of model calibration on the steel buildings. The study involves the application of modal testing techniques to collect data from a three-story steel frame building model tested at the Civil Engineering Department of Karadeniz Technical University. The experimental measurements are performed under randomly generated loads. Dynamic characteristics (natural frequencies, mode shapes and modal damping ratios) obtained from bare and braced steel frame models are compared with each other. The initial analytical models of the steel model for bare and braced cases are developed and calibrated according to the experimental measurement results. The calibration process aims to minimize the differences between experimental and analytical natural frequencies. The connection rigidities of the beam-to-column are selected as a calibrating parameter in the model calibration process. It is observed that the brace elements cause an increase in the natural frequencies due to the increasing stiffness as well as the changes in the modal behavior. Static analyses of the steel frame model for bare and braced cases are carried out to emphasize the importance of the model calibration by comparing maximum lateral displacements. The calibrated analytical models produce larger lateral displacements than the initial models. The results reveal that the dynamic behavior of steel structures should be evaluated considering the calibrated models for safety of these structures.  相似文献   

2.
Assessment of semi-rigid connections in steel structures by modal testing   总被引:2,自引:0,他引:2  
In conventional design and analysis, the common assumption is that connections of steel frames are fully rigid or frictionless pinned. However, today, the accepted notion is that the connections of members of a steel structure exhibit semi-rigid characteristics. Semi-rigid connections as well as damage cause changes in the dynamic characteristics of the structures. This study presents an investigation into the determination of the quality of the semi-rigid connections when considering changes in dynamic characteristics of steel structures. The investigations involve three scaled models: columns with box cross-sections, columns with rectangular cross-sections, and a 2D frame. The investigation algorithm first calculates natural frequencies and mode shapes from theoretical modal analyses by assuming the supports and joint connections are fully rigid. Secondly, experimental measurements on the models are performed to obtain natural frequencies, mode shapes and modal damping ratios. Thirdly, to reduce differences between theoretical and experimental results, linear elastic rotational springs are used on supports and joint connections of the analytical model. Finally, the connection percentages of both support and beam-to-column connections are determined using an approach improved depending on the rotational spring stiffness.  相似文献   

3.
In this study, the suitability of a new structural system called the knee braced frames (KBFs) is investigated for seismic resistant steel structures. In these structural systems, ends of beams are connected to columns by hinges (simple connection) instead of rigid connections, and ends of knee braced elements are connected to columns and beams by hinges as well. In the present paper, in addition to a comparison between elastic behaviour and elastic fundamental natural period, the ductility reduction factor and the type of collapse mechanism in steel KBFs and steel moment resisting frames (MRFs) are compared. The study revealed that the stiffness of steel buildings can be increased considerably by applying knee braced elements and the effects of knee braced elements are highly dependent on knee braced configuration. By applying the pushover analysis, it was observed that the type of collapse mechanism of KBFs is very similar to the mechanism of MRFs. Furthermore in most cases, the ductility reduction factor, Rμ, obtained from steel KBFs is greater than the ductility reduction factor obtained for steel MRFs. Based on the similarity between type of collapse mechanism and the proximity of ductility reduction coefficients of the KBFs and MRFs systems, it can be concluded that the new steel knee braced frame systems can be categorised as steel MRFs with rigid connections.  相似文献   

4.
基于频率易测且精度较高的特点,提出了框架结构损伤诊断的三步法。首先确定损伤杆件:把频率看作损伤参数的函数,以结构的每根杆件为一个单元,通过测量结构损伤前后频率的变化,构造以损伤参数为未知量的线性方程组,求解得到受损的构件。其次,把受损杆件划分成若干单元,再次构建方程组并求解,确定出损伤的具体位置和程度。最后,采用数理统计的方法,解决了由于测量误差影响诊断精度的问题。通过对一个2层框架结构进行数值模拟分析,表明其损伤识别效果较好。  相似文献   

5.
A two-stage eigensensitivity-based finite element (FE) model updating procedure is developed for structural parameter identification and damage detection for the IASC-ASCE structural health monitoring benchmark steel structure on the basis of ambient vibration measurements. In the first stage, both the weighted least squares and Bayesian estimation methods are adopted for the identification of the connection stiffness of beam-column joints and Young’s modulus of the structure; then the damage detection is conducted via the FE model updating procedure for detecting damaged braces with different damage patterns of the structure. Comparisons between the FE model updated results and the experimental data show that the eigensensitivity-based FE model updating procedure is an effective tool for structural parameter identification and damage detection for steel frame structures.  相似文献   

6.
为真实反映地震作用下墙板与分层装配支撑钢框架的动力协同工作性能,设计了三层足尺分层装配支撑钢框架通过柔性减震连接件外挂PC复合墙板结构模型,通过振动台试验考察其动力损伤演化机制和变形特征。研究结果表明:外挂PC复合墙板的分层装配支撑钢框架结构可以满足我国规范对于抗震安全性的要求,并且表现出损伤控制和低残余位移特性。多遇地震作用下结构和墙板完好无损;设防地震作用下结构无损,墙板微损;罕遇地震作用下结构损伤集中于柔性支撑,梁柱框架无损,墙板及连接无显著破坏;超大地震作用下梁翼缘局部进入塑性,墙板节点和墙板边缘及预埋件处有显著破坏但主体结构完好。采用柔性减震连接件外挂的PC复合墙板不会影响分层装配支撑钢框架的变形恢复能力,其相对于主体结构具有良好的变形适应性,提高了分层装配支撑钢框架的层间变形均匀性,在支撑松弛的情况下可以显著提高结构刚度,从而降低层间位移响应和扭转响应,并削弱了柔性支撑在动力作用下突然张紧产生的冲击效应。总体上,外挂PC复合墙板的分层装配支撑钢框架结构具有优良的抗震性能和震后可恢复性。  相似文献   

7.
In this study, a two-stage method is presented for identifying multiple damage scenarios. In the first stage, the damage locating vector (DLV) method using normalized cumulative energy (nce) is employed for damage localization in structures. In the second stage, the differential evolution algorithm (DE) is used for damage severity of the structures. In addition, in the second stage, a modification of an available objective function is made for handing the issue of symmetric structures. To verify the effectiveness of the present technique, numerical examples of a 72-bar space truss and a one-span steel portal frame are considered. In addition, the effect of noise on the performance of the identification results is also investigated. The numerical results show that the proposed combination gives good assessment of damage location and extent for multiple structural damage cases.  相似文献   

8.
一种框架结构损伤诊断两步法   总被引:1,自引:0,他引:1  
提出了一种仅用限模态信息的结构损伤诊断两步法。第一步,利用测量自由度正则化损伤指标向量得到损伤构件的大致区域。第二步,在第一步选定的区域内,利用设计灵敏度技术对可能的损伤构件进行定位、定量分析。利用四层平面框架进行了数值模拟,建立四层平面框架的有限元模型,用不同单元弹性模量的降低来模拟各种不同的损伤工况,并对每种损伤工况进行了损伤位置和损伤程度的诊断,数值模拟结果表明,本文所提出的结构损伤诊断的两步法是可行的。  相似文献   

9.
中心支撑钢框架结构(CBFs)中支撑与框架梁柱连接时,采用传统焊接连接方式容易发生脆性破坏,使支撑不能发挥应有的作用.为此,设计了一种可与框架结构采用螺栓连接的端部配置延性铸造件的装配式防屈曲支撑,并对6个支撑完成了低周往复加载试验,研究了其破坏模式、应力分布、滞回性能等.结果 表明,端部配置延性铸造件的装配式防屈曲支...  相似文献   

10.
空间支撑钢框架结构的三重非线性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了探讨三维结构的高等分析方法,本文将有限单元法与梁柱法相结合,建立了空间支撑钢框架结构的三重非线性分析方法,该法综合考虑了几何、材料和连接非线性效应。文中基于非线性连续介质力学理论和考虑剪切效应的稳定插值函数建立的严格三维梁柱单元刚度矩阵,包含了轴向、剪切、双向弯曲与扭转及其各耦合效应。三维单元简化塑性区模型可模拟塑性扩展,利用单元两端抗转弹簧和考虑支撑效应的节点域剪切变形模型来模拟连接非线性。使用包括几何、材料和连接非线性的数值算例来检验本文方法和所编计算机程序的可行性、有效性与精确度。算例表明,利用本文方法,每个构件只需一个单元即可准确预测三维结构的极限荷载与失稳模态,可提高结构非线性空间性能的分析效率。  相似文献   

11.
The objective of this paper is to propose a method for the evaluation of the elastic critical buckling load of columns in frames consisting of members susceptible to non-negligible shear deformations, such as built-up members in steel frames, based on Engesser's approach. To that effect, a stability matrix is proposed and three general stability equations are derived for the cases of unbraced, partially braced and braced frames. Indicative graphic interpretation of the solutions for the stability equations of the braced and unbraced cases is shown. Slope-deflection equations for shear-weak members with semi-rigid connections are also derived and used for the presentation of a complete set of rotational stiffness coefficients, which are then used for the replacement of members converging at the bottom and top ends of the column in question by equivalent springs. All possible rotational and translational boundary conditions at the far end of these members, as well as the eventual presence of axial force, are considered. Five examples are presented, dealing with braced, unbraced and partially braced frames, with rigid and semi-rigid beam to column connections, loaded with concentrated or uniformly distributed loads, in a symmetrical or non-symmetrical pattern. In all cases the proposed approach is in excellent agreement with finite element results.  相似文献   

12.
由于支撑节点板的存在,将对铰接支撑框架结构中的梁柱节点的转动能力产生影响,梁柱节点的刚度将由铰接过渡到半刚接。本文通过ABAQUS有限元分析软件,分析了节点板的尺寸、厚度对梁柱节点刚度的影响。由于梁柱节点半刚接的影响,结构体系的整体反应及局部杆件内力都将受到影响,通过分析计算,可以发现梁柱节点半刚接对结构体系整体反应影响较小,但是对布置支撑的中间跨梁的弯矩影响则不能被忽略。  相似文献   

13.
In the Y‐type eccentrically braced frame structures, the links as fuses are generally located outside the beams; the links can be easily repairable or replaceable after earthquake without obvious damage in the slab and beam. The non‐dissipative member (beams, braces, and columns) in the Y‐type eccentrically braced frames are overestimated designed to ensure adequate plastic deformation of links with dissipating sufficient energy. However, the traditionally code design not only wastes steel but also limits the application of eccentrically braced frames. In this paper, Y‐type eccentrically braced steel frames with high‐strength steel is proposed; links and braces are fabricated with Q345 steel (the nominal yield stress is 345 MPa); the beams and columns are fabricated with high‐strength steel. The usage of high‐strength steel effectively decreases the cross sections of structural members as well as reduces the construction cost. The performance‐based seismic design of eccentrically braced frames was proposed to achieve the ideal failure mode and the same objective. Based on this method, four groups Y‐type eccentrically braced frames of 5‐story, 10‐story, 15‐story, and 20‐story models with ideal failure modes were designed, and each group includes Y‐type eccentrically braced frames with ordinary steel and Y‐type eccentrically braced frames with high‐strength steel. Nonlinear pushover and nonlinear dynamic analyses were performed on all prototypes, and the near‐fault and far‐fault ground motions are considered. The bearing capacity, lateral stiffness, story drift, link rotations, and failure modes were compared. The results indicated that Y‐type eccentrically braced frames with high‐strength steel have a similar bearing capacity to ordinary steel; however, the lateral stiffness of Y‐type eccentrically braced frames with high‐strength steel is smaller. Similar failure modes and story drift distribution of the prototype structures designed using the performance‐based seismic design method are performed under rare earthquake conditions.  相似文献   

14.
周伟  巫恩海  吴文平 《钢结构》2009,24(11):7-10
为研究隅撑支撑钢框架结构的抗震性能,对纯框架(MRF)、中心支撑框架(CBF)、偏心支撑框架(EBF)和隅撑支撑框架(KBF)等主要框架结构形式的内力进行分析并进行有限元分析对比。结果表明:隅撑支撑钢框架结构的受力性能与耗能能力都要比其他类型的框架形式要好。在相同条件下,KBF比其他形式的框架结构具有更好的抗震性能,因此隅撑支撑钢框架结构是一种良好的结构形式。  相似文献   

15.
罗贵发  张磊  童根树 《工业建筑》2013,43(2):128-133
人字形支撑是多高层钢结构建筑的一种常用支撑形式。在侧向荷载作用下,由于受压支撑发生屈曲,承载能力快速下降,支撑架的横梁会受到拉压支撑间的竖向不平衡力的作用,JGJ 99—98《高层民用建筑钢结构技术规程》规定需加强支撑架横梁来承受这一不平衡力的作用。静力弹塑性推覆分析的结果显示,在加载后期横梁受拉支撑屈服荷载对加强型人字撑结构抗侧能力有很大的贡献。但是,在强烈地震作用下,由于每一支撑均处于拉压交替的受力状态,因此支撑架的受力性能要复杂得多。通过对横梁加强型支撑结构在往复荷载和地震荷载作用下的抗侧性能进行研究,以更好地了解这种支撑结构的抗震性能。  相似文献   

16.
利用ANSYS对一斜支撑框架结构建立有限元模型并分析该结构的动力特性和地震荷载作用下的弹性响应。对该结构进行模态分析,求出前5阶的频率和模态振型,分析得出支撑框架结构的动力特性。进行结构地震反应谱分析考察地震作用下各个构件受力特点。为斜撑框架结构设计提出一些建议和结论。  相似文献   

17.
针对一种适合装配式结构的钢管混凝土柱-双钢梁框架体系,对其2个典型平面节点和2个典型空间节点进行单调和循环加载试验,以研究加载模式和节点类型对节点破坏形态、承载力、刚度、延性及耗能能力的影响。结果表明:试件的破坏均发生在梁端,柱与节点域保持完好,满足“强柱弱梁、强节点弱构件”的抗震设计要求;试件的位移延性系数为2.6~3.6,能量耗散系数为1.7~2.2,耗能能力与型钢混凝土节点相当;加载模式(单调或循环)相同而节点类型(平面或空间)不同时,节点性能差异小;加载模式不同而节点类型相同时,节点性能差异大:循环荷载作用下的节点梁端焊缝发生拉裂破坏,位移延性系数较小。该种节点静力性能较好,但从提高抗断裂能力出发,需进一步改进构造,对焊缝分布进行优化设计。  相似文献   

18.
防屈曲支撑是一种高效稳定的耗能减震装置,其与框架结构一般通过焊接节点板形式连接。目前节点板连接设计方法仅考虑支撑轴力的影响,并没有直接考虑框架开合效应(梁柱在水平地震力下产生的张开/闭合变形)的不利作用,导致焊接节点板在连接处提前发生开裂。通过有限元模拟的方法,同时考虑开合效应和支撑轴力的共同影响,对防屈曲支撑钢框架与角部节点板连接的相互作用进行研究。有限元模型共5组,主要参数包括节点板尺寸、节点板与框架的连接形式以及节点板是否设置自由边加劲肋。在连接形式方面,提出了一种可减小开合效应不利影响的新型可滑移螺栓连接节点板,并与传统焊接节点板的受力性能进行比较。分析结果表明,平面尺寸较小的焊接节点板对结构的抗侧刚度影响最小,可减小设置防屈曲支撑的子框架所分担的地震剪力,相应的节点板受力性能也优于平面尺寸较大的焊接节点板|在焊接节点板上设置自由边加劲肋并不能明显改善其受力性能|所提出的新型可滑移螺栓连接节点板可有效减小节点板对结构刚度的影响,以及框架开合效应对节点板的不利影响,是一种在消能钢框架支撑体系中具有应用前景的新型节点板连接。  相似文献   

19.
In this article, a novel approach to damage identification (location as well as intensity) is presented using eigenstructure assignment (ESA)-based finite-element model (FEM) updating. ESA is a control-based approach that utilises state or output feedback of a system to alter its eigenstructure. The proposed method identifies the system’s state transition matrix and its eigenstructure from the response time history. The identified eigenstructure is first mapped onto the physical space and then reconstructed in state space in the preferred orientation and order which, in turn, is used as the target for the ESA algorithm to uniquely update the system matrices of the baseline FEM. Comparing the updated stiffness matrix with the baseline, the location and intensity of damage are estimated. Numerical validation of the method is performed on a shear frame, a Euler–Bernoulli beam, and an aluminium plate. A parametric study involving different levels of noise in the simulated response histories is undertaken. The algorithm is then tested with actual response histories from a damaged (notched) two span continuous steel beam and a damaged (indented) aluminium plate in the laboratory. The accuracy of the method in identifying the location and extent of damage is found satisfactory. Being eigenstructure based, the proposed methodology is restricted to linear time-invariant systems.  相似文献   

20.
Concentrically braced frames (CBFs) are widely used as lateral-load resisting system in steel structures. This study examines the effects of different parameters especially those associated with connections, on the behavior of CBFs. A single bay, singlestory frame is used to evaluate the interaction between structural members. Nonlinear analyses using a detailed inelastic finiteelement model (FEM) are carried out to study the behavior of frames subjected to cyclic loading. Models are designed based on seismic codes and analyzed to evaluate the performance of both SCBFs and OCBFs. The equivalent plastic strain concept is used to determine the ductility capacity and to predict fracture and failure in these models. Results show that the seismic performance of CBFs, which are designed according to current provisions can be improved by configuring the details of gusset plate connections in a way that inelastic demands are balanced in middle of brace and gusset plate corners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号