首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
New Activated Sludge (NAS®) is a hybrid, floc-based nitrogen removal process without carbon addition, based on the control of sludge retention times (SRT) and dissolved oxygen (DO) levels. The aim of this study was to examine the performance of a retrofitted four-stage NAS® plant, including on-line measurements of greenhouse gas emissions (N2O and CH4). The plant treated anaerobically digested industrial wastewater, containing 264 mg N L−1, 1154 mg chemical oxygen demand (COD) L−1 and an inorganic carbon alkalinity of 34 meq L−1. The batch-fed partial nitritation step received an overall nitrogen loading rate of 0.18-0.22 kg N m−3 d−1, thereby oxidized nitrogen to nitrite (45-47%) and some nitrate (13-15%), but also to N2O (5.1-6.6%). This was achieved at a SRT of 1.7 d and DO around 1.0 mg O2 L−1. Subsequently, anammox, denitrification and nitrification compartments were followed by a final settler, at an overall SRT of 46 d. None of the latter three reactors emitted N2O. In the anammox step, 0.26 kg N m−3 d−1 was removed, with an estimated contribution of 71% by the genus Kuenenia, which constituted 3.1% of the biomass. Overall, a nitrogen removal efficiency of 95% was obtained, yielding a dischargeable effluent. Retrofitting floc-based nitrification/denitrification with carbon addition to NAS® allowed to save 40% of the operational wastewater treatment costs. Yet, a decrease of the N2O emissions by about 50% is necessary in order to obtain a CO2 neutral footprint. The impact of emitted CH4 was 20 times lower.  相似文献   

2.
3.
This study is focused on the diversity of bacterial communities from two series of horizontal subsurface flow constructed wetlands (CW) polishing high salinity tannery wastewater. Each series was planted with Arundo donax or Sarcocornia sp. in a substrate composed by expanded clay and sand. Chemical and biochemical oxygen demand removal efficiencies were similar in each series, varying between 58 and 67% (inlet COD 218 ± 28 mg L−1) and 60 and 77% (inlet BOD5 37 ± 6 mg L−1), respectively. High numbers of culturable bacteria were obtained from substrate and root samples - 5.75 × 106-3.95 × 108 CFU g−1 recovered on marine agar and 1.72 × 107-8.46 × 108 CFU g−1 on nutrient agar. Fifty bacterial isolates were retrieved from the CW, related phylogenetically to Firmicutes, Actinobacteria, Bacteroidetes, α-, β-, and γ-Proteobacteria. Changes in the bacterial communities, from roots and substrate of each series, related to the plant species, hydraulic loading rates and along CW operation were examined using denaturating gradient gel electrophoresis (DGGE). The clustering analysis suggested that a diverse and distinct bacterial community inhabits each series, which was related to the type of plant present in each CW.  相似文献   

4.
In the last two decades, constructed wetland systems gained increasing interest in wastewater treatment and as such have been intensively studied around the world. While most of the studies showed excellent removal of various pollutants, the exact contribution, in kinetic terms, of its particular components (such as: root, gravel and water) combined with bacteria is almost nonexistent.In the present study, a phenol degrader bacterium identified as Pseudomonas pseudoalcaligenes was isolated from a constructed wetland, and used in an experimental set-up containing: plants and gravel. Phenol removal rate by planktonic and biofilm bacteria (on sterile Zea mays roots and gravel surfaces) was studied. Specific phenol removal rates revealed significant advantage of planktonic cells (1.04 × 10−9 mg phenol/CFU/h) compared to root and gravel biofilms: 4.59 × 10−11-2.04 × 10−10 and 8.04 × 10−11-4.39 × 10−10 (mg phenol/CFU/h), respectively.In batch cultures, phenol biodegradation kinetic parameters were determined by biomass growth rates and phenol removal as a function of time. Based on Haldane equation, kinetic constants such as μmax = 1.15/h, Ks = 35.4 mg/L and Ki = 198.6 mg/L fit well phenol removal by P. pseudoalcaligenes.Although P. pseudoalcaligenes planktonic cells showed the highest phenol removal rate, in constructed wetland systems and especially in those with sub-surface flow, it is expected that surface associated microorganisms (biofilms) will provide a much higher contribution in phenol and other organics removal, due to greater bacterial biomass.Factors affecting the performance of planktonic vs. biofilm bacteria in sub-surface flow constructed wetlands are further discussed.  相似文献   

5.
Liu Z  Cui F  Ma H  Fan Z  Zhao Z  Hou Z  Liu D 《Water research》2012,46(7):2290-2298
The bio-reaction of nitrobenzene (NB) with Microcystis aeruginosa was investigated at different initial algal densities and NB concentrations by performing static experiments. The results showed that the elimination of NB was enhanced by the bio-reaction, and the reaction rate varied as a function of the reaction time. Moreover, the reaction rate was significantly affected by the algal density and NB concentration. A kinetic analysis showed that the elimination of NB in a solution without algae appeared to be pseudo-first-order with respect to the NB concentration, whereas a first-order model was too oversimplified to describe the elimination of NB in a solution with algae. Assuming that different algal cells have the same effect on the bio-reaction under the same conditions, the bio-reaction can be described as dCNB = −k0CAmANBndt (where k0 is the reaction rate constant, CA is the algae density and CNB is the concentration of NB). When the growth of algae was not considered, the value of k0, m and n were 8.170 × 10−4, 0.5887 and 1.692, respectively. Alternatively, when algae were in the exponential growth phase, the value of k0, m and n were 1.6871 × 10−5, 0.7248 and 2.5407, respectively, according to a nonlinear fitting analysis. The kinetic model was also used to elucidate the effect of nutritional limitation on the bio-reaction.  相似文献   

6.
In this study, the production of polyhydroxyalkanoates (PHAs) from waste activated sludge (WAS) was evaluated. PHAs were produced from fermented WAS pretreated via high-pressure thermal hydrolysis, a stream characterised by high levels of nutrients (approximately 3.5 g N L−1 and 0.5 g P L−1) and soluble organics. PHA-storing organisms were successfully enriched at high organic loading rates (6 g CODsol L−1 d−1) under aerobic dynamic feeding in sequencing batch reactors at a sludge retention time of 6 d with a short feast length less than 20% of the cycle, and a maximum substrate concentration during feast of 1 g CODVFA L−1. The biomass enrichment, characterised by a decrease in species evenness based on Lorenz curves, provided a biomass that accumulated 25% PHA on a dry-biomass basis with yields on VFA of 0.4 Cmol Cmol−1 in batch tests. The PHA consisted of ∼70 mol% 3-hydroxybutyrate and ∼30 mol% 3-hydroxyvalerate, and presented high thermal stability (Td = 283-287 °C) and a molecular mass ranging from 0.7 to 1.0 × 106 g mol−1. Overall PHA storage was comparable to that achieved with other complex substrates; however, lower PHA storage rates (0.04-0.05 Cmol PHA−1 Cmol X−1 h−1) and productivities (3-4 Cmol PHA L−1 h−1) were probably associated with a biomass-growth and high-respiration response induced by high levels of non-VFA organics (40-50% of CODsol in feed) and nutrients. PHA production is feasible from pretreated WAS, but the enrichment and accumulation process require further optimisation. A milder WAS pretreatment yielding lower levels of non-VFA organics and readily available nutrients may be more amenable for improved performance.  相似文献   

7.
Ou H  Gao N  Deng Y  Qiao J  Wang H 《Water research》2012,46(4):1241-1250
In this study, the immediate and long-term impacts of shortwave ultraviolet (UV-C) irradiation on photosynthetic capacity, survival, and recovery of Microcystis aeruginosa were investigated. The risk of microcystin-LR (MC-LR) release during irradiation was also estimated. The cell density was determined by a flow cytometry, and typical chlorophyll fluorescence parameters, including the effective quantum yield, photosynthetic efficiency and maximal electron transport rate, were measured by a pulse amplitude modulated (PAM) fluorometer. Under various UV-C dosages (140-4200 mJ cm−2), photosynthetic capacities were reduced, to different degrees, accompanied by slight cytoclasis and complete degradation of extracellular MC-LR immediately after irradiation. In a 6-d cultivation following UV-C irradiation, cell density and extracellular MC-LR in the samples treated by 140 mJ cm−2 UV-C irradiation increased from 4.0 × 106 cells mL−1 and 8 μg L−1 to 5.1 × 106 cells mL−1 and 20 μg L−1, respectively. Significant M. aeruginosa cytoclasis (cell density from 4.0 × 106 to 1.0 × 106 cells mL−1) and MC-LR release (2-25 μg L−1) occurred when the UV-C dosage reached 350 mJ cm−2. Cell cytoclasis and MC-LR release were enhanced in the cultivated samples under higher UV-C dosages. Results revealed that photosynthetic parameters were useful tools to predict the recovery profiles of M. aeruginosa cells, and the MC-LR release risk should be considered after UV-C inactivation.  相似文献   

8.
Denitrification beds are containers filled with wood by-products that serve as a carbon and energy source to denitrifiers, which reduce nitrate (NO3) from point source discharges into non-reactive dinitrogen (N2) gas. This study investigates a range of alternative carbon sources and determines rates, mechanisms and factors controlling NO3 removal, denitrifying bacterial community, and the adverse effects of these substrates. Experimental barrels (0.2 m3) filled with either maize cobs, wheat straw, green waste, sawdust, pine woodchips or eucalyptus woodchips were incubated at 16.8 °C or 27.1 °C (outlet temperature), and received NO3 enriched water (14.38 mg N L−1 and 17.15 mg N L−1). After 2.5 years of incubation measurements were made of NO3-N removal rates, in vitro denitrification rates (DR), factors limiting denitrification (carbon and nitrate availability, dissolved oxygen, temperature, pH, and concentrations of NO3, nitrite and ammonia), copy number of nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ) genes, and greenhouse gas production (dissolved nitrous oxide (N2O) and methane), and carbon (TOC) loss. Microbial denitrification was the main mechanism for NO3-N removal. Nitrate-N removal rates ranged from 1.3 (pine woodchips) to 6.2 g N m−3 d−1 (maize cobs), and were predominantly limited by C availability and temperature (Q10 = 1.2) when NO3-N outlet concentrations remained above 1 mg L−1. The NO3-N removal rate did not depend directly on substrate type, but on the quantity of microbially available carbon, which differed between carbon sources. The abundance of denitrifying genes (nirS, nirK and nosZ) was similar in replicate barrels under cold incubation, but varied substantially under warm incubation, and between substrates. Warm incubation enhanced growth of nirS containing bacteria and bacteria that lacked the nosZ gene, potentially explaining the greater N2O emission in warmer environments. Maize cob substrate had the highest NO3-N removal rate, but adverse effects include TOC release, dissolved N2O release and substantial carbon consumption by non-denitrifiers. Woodchips removed less than half of NO3 removed by maize cobs, but provided ideal conditions for denitrifying bacteria, and adverse effects were not observed. Therefore we recommend the combination of maize cobs and woodchips to enhance NO3 removal while minimizing adverse effects in denitrification beds.  相似文献   

9.
The fate of 14 antidepressants along with their respective N-desmethyl metabolites and the anticonvulsive drug carbamazepine (CBZ) was studied in 5 different sewage treatment plants (STPs) across Canada. Using two validated LC-MS/MS analytical methods, the concentrations of the different compounds were determined in raw influent, final effluent and treated biosolids samples. Out of the 15 compounds investigated, 13 were positively detected in most 24-h composite raw influent samples. Analysis showed that venlafaxine (VEN), its metabolite O-desmethylvenlafaxine (DVEN), citalopram (CIT), and CBZ were detected at the highest concentrations in raw influent (up to 4.3 μg L−1 for DVEN). Cumulated results showed strong evidence that primary treatment and trickling filter/solids contact has limited capacity to remove antidepressants from sewage, while activated sludge, biological aerated filter, and biological nutrient removal processes yielded moderate results (mean removal rates: 30%). The more recalcitrant compounds to be eliminated from secondary STPs were VEN, DVEN and CBZ with mean removal rates close to 12%. Parent compounds were removed to a greater degree than their metabolites. The highest mean concentrations in treated biosolids samples were found for CIT (1033 ng g−1), amitriptyline (768 ng g−1), and VEN (833 ng g−1). Experimental sorption coefficients (Kd) were also determined. The lowest Kd values were obtained with VEN, DVEN, and CBZ (67-490 L kg−1). Sorption of these compounds on solids was assumed negligible (log Kd ≤ 2). However, important sorption on solids was observed for sertraline, desmethylsertraline, paroxetine and fluoxetine (log Kd > 4).  相似文献   

10.
Biological wastewater treatment by aerobic granular sludge biofilms offers the possibility to combine carbon (COD), nitrogen (N) and phosphorus (P) removal in a single reactor. Since denitrification can be affected by suboptimal dissolved oxygen concentrations (DO) and limited availability of COD, different aeration strategies and COD loads were tested to improve N- and P-removal in granular sludge systems. Aeration strategies promoting alternating nitrification and denitrification (AND) were studied to improve reactor efficiencies in comparison with more classical simultaneous nitrification–denitrification (SND) strategies. With nutrient loading rates of 1.6 gCOD L−1 d−1, 0.2 gN L−1 d−1, and 0.08 gP L−1 d−1, and SND aeration strategies, N-removal was limited to 62.3 ± 3.4%. Higher COD loads markedly improved N-removal showing that denitrification was limited by COD. AND strategies were more efficient than SND strategies. Alternating high and low DO phases during the aeration phase increased N-removal to 71.2 ± 5.6% with a COD loading rate of 1.6 gCOD L−1 d−1. Periods of low DO were presumably favorable to denitrifying P-removal saving COD necessary for heterotrophic N-removal. Intermittent aeration with anoxic periods without mixing between the aeration pulses was even more favorable to N-removal, resulting in 78.3 ± 2.9% N-removal with the lowest COD loading rate tested. P-removal was under all tested conditions between 88 and 98%, and was negatively correlated with the concentration of nitrite and nitrate in the effluent (r = −0.74, p < 0.01). With low COD loading rates, important emissions of undesired N2O gas were observed and a total of 7–9% of N left the reactor as N2O. However, N2O emissions significantly decreased with higher COD loads under AND conditions.  相似文献   

11.
Nontuberculous mycobacteria are resistant to conventional water treatment; indeed, they have been recovered from a wide variety of environmental sources. Here, we applied the photoelectrocatalytic technique using a Ti/TiO2–Ag photoanode to inactivate mycobacteria. For a mycobacteria population of 5 × 108 CFU mL−1, we achieved 99.9 and 99.8% inactivation of Mycobacterium kansasii and Mycobacterium avium with rate constant of 6.2 × 10−3 and 4.2 × 10−3 min−1, respectively, after 240 min. We compared the proposed method with the photolytic and photocatalytic methods. Using a mycobacteria population of 7.5 × 104 CFU mL−1, the proposed Ti/TiO2–Ag photoanode elicited total mycobacteria inactivation within 3 min of treatment; the presence of Ag nanoparticles in the electrode provided 1.5 larger degradation rate constant as compared with the Ti/TiO2 anode (1.75 × 10−2 for M. kansassi and 1.98 × 10−2 for M. avium). We monitored the degradation of the metabolites released during cellular lysis by TOC removal, sugar release, chromatography, and mass spectrometry measurements; photoelectrocatalysis and Ti/TiO2–Ag photoanodes furnished the best results.  相似文献   

12.
Extremely soft sewage sludge lagoon exists in many landfills of municipal solid wastes in China. A two-staged in-situ treatment method, vacuum preloading on the conditioned sludge combined with subsequent cement solidification treatment, was proposed to improve the sludge ground. In this study, vacuum filtration tests and oedometer tests were firstly performed to investigate the effect of FeCl3-conditioning on the consolidation performance of sewage sludge. Then a pilot test was carried out in the field to examine the effectiveness of vacuum preloading on the FeCl3-conditioned sludge by using an integrated type of PVD. The test results demonstrated that the coefficient of consolidation increased with more percentage of FeCl3 added. For the sludge sample conditioned with 10% of FeCl3 (dry basis), the coefficient of consolidation increased to 4 × 10−5–1.2 × 10−4 cm2/s, which was four-nine times greater than that of the non-conditioned sludge. 68 days' vacuum preloading on the 3.2 m thick sludge pit resulted in a magnitude of 70.9% in the average degree of consolidation and a reduction by 47.5% in the total volume of sludge. The water content of the sludge reduced from the initial 860% to 140%–450%. The undrained shear strength of the consolidated sludge with a water content of 140% was about 10 kPa, and decreased sharply with a further increase in water content. The integrated type of PVDs used in the pilot test showed a good performance with respect to the discharge capacity and the resistance against chemical corrosion. Comparative analyses show that the proposed two-staged in situ treatment method has advantages over the sole cement solidification method with respect to cost saving and environment protection.  相似文献   

13.
Lui YS  Qiu JW  Zhang YL  Wong MH  Liang Y 《Water research》2011,45(3):1454-1462
Algal-derived organic materials (including algal cells, hydrophilic and hydrophobic proteins) from Chlamydomonas sp. (a common green alga in local reservoirs), were chlorinated in the laboratory (20 °C, pH 7, Cl2/DOC ratio of 20 mg Cl2 mg−1). Levels of disinfection by-products and mutagenicity (via Salmonella T100 mutation assay, -S9) over 2 h of chlorination time were determined. The hydrophilic proteins were more effective precursors of chloroform (35.9 μmol L−1 at 120 min), 35 times greater than that from the hydrophobic proteins; whereas the hydrophobic proteins were more potent precursors of direct-acting mutagens (maximum level of 50.1 rev μL−1 at 30 s) than the hydrophilic proteins (maximum level of 3.38 rev μL−1 at 60 min). The mutagenicity of the chlorinated solutions generally reached a peak level shortly after chlorination and then declined afterwards, a pattern different from that of chloroform generation. The results indicate that algal hydrophilic proteins, containing low aromaticity and difficult to be removed via coagulation/flocculation, are important chloroform precursors. It is also suggested that hydrophobic organic intermediates with low molecular weight formed during chlorination may serve as the direct-acting mutagens.  相似文献   

14.
The energy consumptions of conventional ozonation and the AOPs O3/H2O2 and UV/H2O2 for transformation of organic micropollutants, namely atrazine (ATR), sulfamethoxazole (SMX) and N-nitrosodimethylamine (NDMA) were compared. Three lake waters and a wastewater were assessed. With p-chlorobenzoic acid (pCBA) as a hydroxyl radical (OH) probe compound, we experimentally determined the rate constants of organic matter of the selected waters for their reaction with OH (kOH,DOM), which varied from 2.0 × 104 to 3.5 × 104 L mgC−1 s−1. Based on these data we calculated OH scavenging rates of the various water matrices, which were in the range 6.1-20 × 104 s−1. The varying scavenging rates influenced the required oxidant dose for the same degree of micropollutant transformation. In ozonation, for 90% pCBA transformation in the water with the lowest scavenging rate (lake Zürich water) the required O3 dose was roughly 2.3 mg/L, and in the water with the highest scavenging rate (Dübendorf wastewater) it was 13.2 mg/L, corresponding to an energy consumption of 0.035 and 0.2 kWh/m3, respectively. The use of O3/H2O2 increased the rate of micropollutant transformation and reduced bromate formation by 70%, but the H2O2 production increased the energy requirements by 20-25%. UV/H2O2 efficiently oxidized all examined micropollutants but energy requirements were substantially higher (For 90% pCBA conversion in lake Zürich water, 0.17-0.75 kWh/m3 were required, depending on the optical path length). Energy requirements between ozonation and UV/H2O2 were similar only in the case of NDMA, a compound that reacts slowly with ozone and OH but is transformed efficiently by direct photolysis.  相似文献   

15.
The paper describes the aerobic degradation of carbamazepine (CBZ), an anti-epileptic drug widely found in aquatic environment, from Erlenmeyer flask to bioreactor by the white-rot fungus Trametes versicolor. In Erlenmeyer flask, CBZ at approximately 9 mg L−1 was almost completely eliminated (94%) after 6 d, while at near environmentally relevant concentrations of 50 μg L−1, 61% of the contaminant was degraded in 7 d. Acridone, acridine, 10,11-dihydro-10,11-dihydroxy-CBZ, and 10, 11-epoxy-CBZ were identified as major metabolites, confirming the degradation of CBZ. The degradation process was then carried out in an air pulsed fluidized bioreactor operated in batch and continuous mode. Around 96% of CBZ was removed after 2 days in batch mode operation, and 10,11-dihydro-10,11-epoxycarbamazepine was found as unique metabolite. In bioreactor operated in continuous mode with a hydraulic retention time of 3 d, 54% of the inflow concentration (approx. 200 μg L−1) was reduced at the steady state (25 d) with a CBZ degradation rate of 11.9 μg CBZ g−1 dry weight d−1. No metabolite was detected in the culture broth. Acute toxicity tests (Microtox) indicated that the final culture broth in both batch and continuous mode operation were non toxic, with 15 min EC50 values of 24% and 77%, respectively.  相似文献   

16.
1,4-Dioxane biodegradation was investigated in microcosms prepared with groundwater and soil from an impacted site in Alaska. In addition to natural attenuation conditions (i.e., no amendments), the following treatments were tested: (a) biostimulation by addition of 1-butanol (a readily available auxiliary substrate) and inorganic nutrients; and (b) bioaugmentation with Pseudonocardia dioxanivorans CB1190, a well-characterized dioxane-degrading bacterium, or with Pseudonocardia antarctica DVS 5a1, a bacterium isolated from Antarctica. Biostimulation enhanced the degradation of 50 mg L−1 dioxane by indigenous microorganisms (about 0.01 mg dioxane d−1 mg protein−1) at both 4 and 14 °C, with a simultaneous increase in biomass. A more pronounced enhancement was observed through bioaugmentation. Microcosms with 50 mg L−1 initial dioxane (representing source-zone contamination) and augmented with CB1190 degraded dioxane fastest (0.16 ± 0.04 mg dioxane d−1 mg protein−1) at 14 °C, and the degradation rate decreased dramatically at 4 °C (0.021 ± 0.007 mg dioxane d−1 mg protein−1). In contrast, microcosms with DVS 5a1 degraded dioxane at similar rates at 4 °C and 14 °C (0.018 ± 0.004 and 0.015 ± 0.006 mg dioxane d−1 mg protein−1, respectively). DVS 5a1 outperformed CB1190 when the initial dioxane concentration was low (500 μg L−1, which is representative of the leading edge of plumes). This indicates differences in competitive advantages of these two strains. Natural attenuation microcosms also showed significant degradation over 6 months when the initial dioxane concentration was 500 μg L−1. This is the first study to report the potential for dioxane bioremediation and natural attenuation of contaminated groundwater in sensitive cold-weather ecosystems such as the Arctic.  相似文献   

17.
Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L−1 Fe2+ and 10 mg L−1 of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3-, the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe3+-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments.  相似文献   

18.
Flow-through reactors with manganese oxides were examined for their capacity to remove 17α-ethinylestradiol (EE2) at μg L−1 and ng L−1 range from synthetic wastewater treatment plant (WWTP) effluent. The mineral MnO2 reactors removed 93% at a volumetric loading rate (BV) of 5 μg EE2 L−1 d−1 and from a BV of 40 μg EE2 L−1 d−1 on, these reactors showed 75% EE2 removal. With the biologically produced manganese oxides, only 57% EE2 was removed at 40 μg EE2 L−1 d−1. EE2 removal in the ng L−1 range was 84%. The ammonium present in the influent (10 mg N L−1) was nitrified and ammonia-oxidizing bacteria (AOB) were found to be of prime importance for the degradation of EE2. Remarkably, EE2 removal by AOB continued for a period of 4 months after depleting NH4+ in the influent. EE2 removal by manganese-oxidizing bacteria was inhibited by NH4+. These results indicate that the metabolic properties of nitrifiers can be employed to polish water containing EE2 based estrogenic activity.  相似文献   

19.
The degradation of two pesticides, bromoxynil and trifluralin, was investigated in ultrapure and natural water solutions under ultraviolet (UV) light and a combination of UV and hydrogen peroxide (H2O2). The effect of pH on the photooxidation of the pesticides was also studied. The results indicated that under direct photolysis with monochromatic light at 253.7 nm and different conditions, the photochemical rates followed first-order kinetics, with fluence-based rate constants ranging from 9.15 × 10−4 to 6.37 × 10−3 cm2 mJ−1 and 7.63 × 10−3 to 1.47 × 10−2 cm2 mJ−1 for bromoxynil and trifluralin, respectively. Quantum yields, in the range of 0.08-0.25 for bromoxynil and 0.12-0.72 for trifluralin, were observed in experiments using ultrapure water. The study also found that the UV/H2O2 process enhanced the oxidation rate in comparison to direct photolysis. A 90% degradation with UV dose of 333 and 188 mJ cm−2 was achieved for bromoxynil and trifluralin, respectively, in natural water, in presence of 8.8 × 10−4 M H2O2. To assess the aquatic toxicity, the Microtox® 81.9% screening test protocol was used before and after treatment. The test results indicated a decrease in the acute toxicity of the samples after treatment for both pesticides.  相似文献   

20.
In the present study the degradation kinetics and mineralization of diclofenac (DCF) by the TiO2 photocatalysis were investigated in terms of UV absorbance and COD measurements for a wide range of initial DCF concentrations (5-80 mg L−1) and photocatalyst loadings (0.2-1.6 g TiO2 L−1) in a batch reactor system. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Artemia salina) was performed to evaluate the potential detoxification of DCF. A pseudo-first-order kinetic model was found to fit well most of the experimental data, while at high initial DCF concentrations (40 and 80 mg L−1) and at 1.6 g TiO2 L−1 photocatalyst loading a second-order kinetic model was found to fit the data better. The toxicity of the treated DCF samples on D. magna and P. subcapitata varied during the oxidation, probably due to the formation of some intermediate products more toxic than DCF. Unicellular freshwater algae was found to be very sensitive to the treated samples as well as the results from D. magna test were consistent to those of algae tests. A. salina was not found to be sensitive under the investigated conditions. Finally, UV absorbance analysis were found to be an useful tool for a fast and easy to perform measurement to get preliminary information on the organic intermediates that are formed during oxidation and also on their disappearance rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号